All Downloads are FREE. Search and download functionalities are using the official Maven repository.

casesDj4.math_102.ChiSquareTestImpl_s Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math.stat.inference;

import org.apache.commons.math.MathException;
import org.apache.commons.math.distribution.ChiSquaredDistribution;
import org.apache.commons.math.distribution.ChiSquaredDistributionImpl;
import org.apache.commons.math.distribution.DistributionFactory;

/**
 * Implements Chi-Square test statistics defined in the
 * {@link UnknownDistributionChiSquareTest} interface.
 *
 * @version $Revision$ $Date$
 */
public class ChiSquareTestImpl implements UnknownDistributionChiSquareTest {

    /** Distribution used to compute inference statistics. */
    private ChiSquaredDistribution distribution;
  
    /**
     * Construct a ChiSquareTestImpl 
     */
    public ChiSquareTestImpl() {
        this(new ChiSquaredDistributionImpl(1.0));
    }

    /**
     * Create a test instance using the given distribution for computing
     * inference statistics.
     * @param x distribution used to compute inference statistics.
     * @since 1.2
     */
    public ChiSquareTestImpl(ChiSquaredDistribution x) {
        super();
        setDistribution(x);
    }
     /**
     * {@inheritDoc}
     * 

Note: This implementation rescales the * expected array if necessary to ensure that the sum of the * expected and observed counts are equal.

* * @param observed array of observed frequency counts * @param expected array of expected frequency counts * @return chi-square test statistic * @throws IllegalArgumentException if preconditions are not met * or length is less than 2 */ public double chiSquare(double[] expected, long[] observed) throws IllegalArgumentException { if ((expected.length < 2) || (expected.length != observed.length)) { throw new IllegalArgumentException( "observed, expected array lengths incorrect"); } if (!isPositive(expected) || !isNonNegative(observed)) { throw new IllegalArgumentException( "observed counts must be non-negative and expected counts must be postive"); } double sumSq = 0.0d; double dev = 0.0d; for (int i = 0; i < observed.length; i++) { dev = ((double) observed[i] - expected[i]); sumSq += dev * dev / expected[i]; } return sumSq; } /** * {@inheritDoc} *

Note: This implementation rescales the * expected array if necessary to ensure that the sum of the * expected and observed counts are equal.

* * @param observed array of observed frequency counts * @param expected array of exptected frequency counts * @return p-value * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs computing the p-value */ public double chiSquareTest(double[] expected, long[] observed) throws IllegalArgumentException, MathException { distribution.setDegreesOfFreedom(expected.length - 1.0); return 1.0 - distribution.cumulativeProbability( chiSquare(expected, observed)); } /** * {@inheritDoc} *

Note: This implementation rescales the * expected array if necessary to ensure that the sum of the * expected and observed counts are equal.

* * @param observed array of observed frequency counts * @param expected array of exptected frequency counts * @param alpha significance level of the test * @return true iff null hypothesis can be rejected with confidence * 1 - alpha * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs performing the test */ public boolean chiSquareTest(double[] expected, long[] observed, double alpha) throws IllegalArgumentException, MathException { if ((alpha <= 0) || (alpha > 0.5)) { throw new IllegalArgumentException( "bad significance level: " + alpha); } return (chiSquareTest(expected, observed) < alpha); } /** * @param counts array representation of 2-way table * @return chi-square test statistic * @throws IllegalArgumentException if preconditions are not met */ public double chiSquare(long[][] counts) throws IllegalArgumentException { checkArray(counts); int nRows = counts.length; int nCols = counts[0].length; // compute row, column and total sums double[] rowSum = new double[nRows]; double[] colSum = new double[nCols]; double total = 0.0d; for (int row = 0; row < nRows; row++) { for (int col = 0; col < nCols; col++) { rowSum[row] += (double) counts[row][col]; colSum[col] += (double) counts[row][col]; total += (double) counts[row][col]; } } // compute expected counts and chi-square double sumSq = 0.0d; double expected = 0.0d; for (int row = 0; row < nRows; row++) { for (int col = 0; col < nCols; col++) { expected = (rowSum[row] * colSum[col]) / total; sumSq += (((double) counts[row][col] - expected) * ((double) counts[row][col] - expected)) / expected; } } return sumSq; } /** * @param counts array representation of 2-way table * @return p-value * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs computing the p-value */ public double chiSquareTest(long[][] counts) throws IllegalArgumentException, MathException { checkArray(counts); double df = ((double) counts.length -1) * ((double) counts[0].length - 1); distribution.setDegreesOfFreedom(df); return 1 - distribution.cumulativeProbability(chiSquare(counts)); } /** * @param counts array representation of 2-way table * @param alpha significance level of the test * @return true iff null hypothesis can be rejected with confidence * 1 - alpha * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs performing the test */ public boolean chiSquareTest(long[][] counts, double alpha) throws IllegalArgumentException, MathException { if ((alpha <= 0) || (alpha > 0.5)) { throw new IllegalArgumentException("bad significance level: " + alpha); } return (chiSquareTest(counts) < alpha); } /** * @param observed1 array of observed frequency counts of the first data set * @param observed2 array of observed frequency counts of the second data set * @return chi-square test statistic * @throws IllegalArgumentException if preconditions are not met */ public double chiSquareDataSetsComparison(long[] observed1, long[] observed2) throws IllegalArgumentException { // Make sure lengths are same if ((observed1.length < 2) || (observed1.length != observed2.length)) { throw new IllegalArgumentException( "oberved1, observed2 array lengths incorrect"); } // Ensure non-negative counts if (!isNonNegative(observed1) || !isNonNegative(observed2)) { throw new IllegalArgumentException( "observed counts must be non-negative"); } // Compute and compare count sums long countSum1 = 0; long countSum2 = 0; boolean unequalCounts = false; double weight = 0.0; for (int i = 0; i < observed1.length; i++) { countSum1 += observed1[i]; countSum2 += observed2[i]; } // Ensure neither sample is uniformly 0 if (countSum1 * countSum2 == 0) { throw new IllegalArgumentException( "observed counts cannot all be 0"); } // Compare and compute weight only if different unequalCounts = (countSum1 != countSum2); if (unequalCounts) { weight = Math.sqrt((double) countSum1 / (double) countSum2); } // Compute ChiSquare statistic double sumSq = 0.0d; double dev = 0.0d; double obs1 = 0.0d; double obs2 = 0.0d; for (int i = 0; i < observed1.length; i++) { if (observed1[i] == 0 && observed2[i] == 0) { throw new IllegalArgumentException( "observed counts must not both be zero"); } else { obs1 = (double) observed1[i]; obs2 = (double) observed2[i]; if (unequalCounts) { // apply weights dev = obs1/weight - obs2 * weight; } else { dev = obs1 - obs2; } sumSq += (dev * dev) / (obs1 + obs2); } } return sumSq; } /** * @param observed1 array of observed frequency counts of the first data set * @param observed2 array of observed frequency counts of the second data set * @return p-value * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs computing the p-value */ public double chiSquareTestDataSetsComparison(long[] observed1, long[] observed2) throws IllegalArgumentException, MathException { distribution.setDegreesOfFreedom((double) observed1.length - 1); return 1 - distribution.cumulativeProbability( chiSquareDataSetsComparison(observed1, observed2)); } /** * @param observed1 array of observed frequency counts of the first data set * @param observed2 array of observed frequency counts of the second data set * @param alpha significance level of the test * @return true iff null hypothesis can be rejected with confidence * 1 - alpha * @throws IllegalArgumentException if preconditions are not met * @throws MathException if an error occurs performing the test */ public boolean chiSquareTestDataSetsComparison(long[] observed1, long[] observed2, double alpha) throws IllegalArgumentException, MathException { if ((alpha <= 0) || (alpha > 0.5)) { throw new IllegalArgumentException( "bad significance level: " + alpha); } return (chiSquareTestDataSetsComparison(observed1, observed2) < alpha); } /** * Checks to make sure that the input long[][] array is rectangular, * has at least 2 rows and 2 columns, and has all non-negative entries, * throwing IllegalArgumentException if any of these checks fail. * * @param in input 2-way table to check * @throws IllegalArgumentException if the array is not valid */ private void checkArray(long[][] in) throws IllegalArgumentException { if (in.length < 2) { throw new IllegalArgumentException("Input table must have at least two rows"); } if (in[0].length < 2) { throw new IllegalArgumentException("Input table must have at least two columns"); } if (!isRectangular(in)) { throw new IllegalArgumentException("Input table must be rectangular"); } if (!isNonNegative(in)) { throw new IllegalArgumentException("All entries in input 2-way table must be non-negative"); } } //--------------------- Protected methods --------------------------------- /** * Gets a DistributionFactory to use in creating ChiSquaredDistribution instances. * @deprecated inject ChiSquaredDistribution instances directly instead of * using a factory. */ protected DistributionFactory getDistributionFactory() { return DistributionFactory.newInstance(); } //--------------------- Private array methods -- should find a utility home for these /** * Returns true iff input array is rectangular. * * @param in array to be tested * @return true if the array is rectangular * @throws NullPointerException if input array is null * @throws ArrayIndexOutOfBoundsException if input array is empty */ private boolean isRectangular(long[][] in) { for (int i = 1; i < in.length; i++) { if (in[i].length != in[0].length) { return false; } } return true; } /** * Returns true iff all entries of the input array are > 0. * Returns true if the array is non-null, but empty * * @param in array to be tested * @return true if all entries of the array are positive * @throws NullPointerException if input array is null */ private boolean isPositive(double[] in) { for (int i = 0; i < in.length; i ++) { if (in[i] <= 0) { return false; } } return true; } /** * Returns true iff all entries of the input array are >= 0. * Returns true if the array is non-null, but empty * * @param in array to be tested * @return true if all entries of the array are non-negative * @throws NullPointerException if input array is null */ private boolean isNonNegative(long[] in) { for (int i = 0; i < in.length; i ++) { if (in[i] < 0) { return false; } } return true; } /** * Returns true iff all entries of (all subarrays of) the input array are >= 0. * Returns true if the array is non-null, but empty * * @param in array to be tested * @return true if all entries of the array are non-negative * @throws NullPointerException if input array is null */ private boolean isNonNegative(long[][] in) { for (int i = 0; i < in.length; i ++) { for (int j = 0; j < in[i].length; j++) { if (in[i][j] < 0) { return false; } } } return true; } /** * Modify the distribution used to compute inference statistics. * * @param value * the new distribution * @since 1.2 */ public void setDistribution(ChiSquaredDistribution value) { distribution = value; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy