casesDj4.math_3.MathArrays_t Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.util;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import org.apache.commons.math3.Field;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
/**
* Arrays utilities.
*
* @since 3.0
* @version $Id$
*/
public class MathArrays {
/** Factor used for splitting double numbers: n = 2^27 + 1 (i.e. {@value}). */
private static final int SPLIT_FACTOR = 0x8000001;
/**
* Private constructor.
*/
private MathArrays() {}
/**
* Real-valued function that operate on an array or a part of it.
* @since 3.1
*/
public interface Function {
/**
* Operates on an entire array.
*
* @param array Array to operate on.
* @return the result of the operation.
*/
double evaluate(double[] array);
/**
* @param array Array to operate on.
* @param startIndex Index of the first element to take into account.
* @param numElements Number of elements to take into account.
* @return the result of the operation.
*/
double evaluate(double[] array,
int startIndex,
int numElements);
}
/**
* Create a copy of an array scaled by a value.
*
* @param arr Array to scale.
* @param val Scalar.
* @return scaled copy of array with each entry multiplied by val.
* @since 3.2
*/
public static double[] scale(double val, final double[] arr) {
double[] newArr = new double[arr.length];
for (int i = 0; i < arr.length; i++) {
newArr[i] = arr[i] * val;
}
return newArr;
}
/**
* Multiply each element of an array by a value.
*
* The array is modified in place (no copy is created).
*
* @param arr Array to scale
* @param val Scalar
* @since 3.2
*/
public static void scaleInPlace(double val, final double[] arr) {
for (int i = 0; i < arr.length; i++) {
arr[i] *= val;
}
}
/**
* Creates an array whose contents will be the element-by-element
* addition of the arguments.
*
* @param a First term of the addition.
* @param b Second term of the addition.
* @return a new array {@code r} where {@code r[i] = a[i] + b[i]}.
* @throws DimensionMismatchException if the array lengths differ.
* @since 3.1
*/
public static double[] ebeAdd(double[] a, double[] b)
throws DimensionMismatchException {
if (a.length != b.length) {
throw new DimensionMismatchException(a.length, b.length);
}
final double[] result = a.clone();
for (int i = 0; i < a.length; i++) {
result[i] += b[i];
}
return result;
}
/**
* Creates an array whose contents will be the element-by-element
* subtraction of the second argument from the first.
*
* @param a First term.
* @param b Element to be subtracted.
* @return a new array {@code r} where {@code r[i] = a[i] - b[i]}.
* @throws DimensionMismatchException if the array lengths differ.
* @since 3.1
*/
public static double[] ebeSubtract(double[] a, double[] b)
throws DimensionMismatchException {
if (a.length != b.length) {
throw new DimensionMismatchException(a.length, b.length);
}
final double[] result = a.clone();
for (int i = 0; i < a.length; i++) {
result[i] -= b[i];
}
return result;
}
/**
* Creates an array whose contents will be the element-by-element
* multiplication of the arguments.
*
* @param a First factor of the multiplication.
* @param b Second factor of the multiplication.
* @return a new array {@code r} where {@code r[i] = a[i] * b[i]}.
* @throws DimensionMismatchException if the array lengths differ.
* @since 3.1
*/
public static double[] ebeMultiply(double[] a, double[] b)
throws DimensionMismatchException {
if (a.length != b.length) {
throw new DimensionMismatchException(a.length, b.length);
}
final double[] result = a.clone();
for (int i = 0; i < a.length; i++) {
result[i] *= b[i];
}
return result;
}
/**
* Creates an array whose contents will be the element-by-element
* division of the first argument by the second.
*
* @param a Numerator of the division.
* @param b Denominator of the division.
* @return a new array {@code r} where {@code r[i] = a[i] / b[i]}.
* @throws DimensionMismatchException if the array lengths differ.
* @since 3.1
*/
public static double[] ebeDivide(double[] a, double[] b)
throws DimensionMismatchException {
if (a.length != b.length) {
throw new DimensionMismatchException(a.length, b.length);
}
final double[] result = a.clone();
for (int i = 0; i < a.length; i++) {
result[i] /= b[i];
}
return result;
}
/**
* Calculates the L1 (sum of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L1 distance between the two points
*/
public static double distance1(double[] p1, double[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += FastMath.abs(p1[i] - p2[i]);
}
return sum;
}
/**
* Calculates the L1 (sum of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L1 distance between the two points
*/
public static int distance1(int[] p1, int[] p2) {
int sum = 0;
for (int i = 0; i < p1.length; i++) {
sum += FastMath.abs(p1[i] - p2[i]);
}
return sum;
}
/**
* Calculates the L2 (Euclidean) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L2 distance between the two points
*/
public static double distance(double[] p1, double[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return FastMath.sqrt(sum);
}
/**
* Calculates the L2 (Euclidean) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L2 distance between the two points
*/
public static double distance(int[] p1, int[] p2) {
double sum = 0;
for (int i = 0; i < p1.length; i++) {
final double dp = p1[i] - p2[i];
sum += dp * dp;
}
return FastMath.sqrt(sum);
}
/**
* Calculates the L∞ (max of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L∞ distance between the two points
*/
public static double distanceInf(double[] p1, double[] p2) {
double max = 0;
for (int i = 0; i < p1.length; i++) {
max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
}
return max;
}
/**
* Calculates the L∞ (max of abs) distance between two points.
*
* @param p1 the first point
* @param p2 the second point
* @return the L∞ distance between the two points
*/
public static int distanceInf(int[] p1, int[] p2) {
int max = 0;
for (int i = 0; i < p1.length; i++) {
max = FastMath.max(max, FastMath.abs(p1[i] - p2[i]));
}
return max;
}
/**
* Specification of ordering direction.
*/
public static enum OrderDirection {
/** Constant for increasing direction. */
INCREASING,
/** Constant for decreasing direction. */
DECREASING
}
/**
* Check that an array is monotonically increasing or decreasing.
*
* @param the type of the elements in the specified array
* @param val Values.
* @param dir Ordering direction.
* @param strict Whether the order should be strict.
* @return {@code true} if sorted, {@code false} otherwise.
*/
public static > boolean isMonotonic(T[] val,
OrderDirection dir,
boolean strict) {
T previous = val[0];
final int max = val.length;
for (int i = 1; i < max; i++) {
final int comp;
switch (dir) {
case INCREASING:
comp = previous.compareTo(val[i]);
if (strict) {
if (comp >= 0) {
return false;
}
} else {
if (comp > 0) {
return false;
}
}
break;
case DECREASING:
comp = val[i].compareTo(previous);
if (strict) {
if (comp >= 0) {
return false;
}
} else {
if (comp > 0) {
return false;
}
}
break;
default:
// Should never happen.
throw new MathInternalError();
}
previous = val[i];
}
return true;
}
/**
* Check that an array is monotonically increasing or decreasing.
*
* @param val Values.
* @param dir Ordering direction.
* @param strict Whether the order should be strict.
* @return {@code true} if sorted, {@code false} otherwise.
*/
public static boolean isMonotonic(double[] val, OrderDirection dir, boolean strict) {
return checkOrder(val, dir, strict, false);
}
/**
* Check that the given array is sorted.
*
* @param val Values.
* @param dir Ordering direction.
* @param strict Whether the order should be strict.
* @param abort Whether to throw an exception if the check fails.
* @return {@code true} if the array is sorted.
* @throws NonMonotonicSequenceException if the array is not sorted
* and {@code abort} is {@code true}.
*/
public static boolean checkOrder(double[] val, OrderDirection dir,
boolean strict, boolean abort)
throws NonMonotonicSequenceException {
double previous = val[0];
final int max = val.length;
int index;
ITEM:
for (index = 1; index < max; index++) {
switch (dir) {
case INCREASING:
if (strict) {
if (val[index] <= previous) {
break ITEM;
}
} else {
if (val[index] < previous) {
break ITEM;
}
}
break;
case DECREASING:
if (strict) {
if (val[index] >= previous) {
break ITEM;
}
} else {
if (val[index] > previous) {
break ITEM;
}
}
break;
default:
// Should never happen.
throw new MathInternalError();
}
previous = val[index];
}
if (index == max) {
// Loop completed.
return true;
}
// Loop early exit means wrong ordering.
if (abort) {
throw new NonMonotonicSequenceException(val[index], previous, index, dir, strict);
} else {
return false;
}
}
/**
* Check that the given array is sorted.
*
* @param val Values.
* @param dir Ordering direction.
* @param strict Whether the order should be strict.
* @throws NonMonotonicSequenceException if the array is not sorted.
* @since 2.2
*/
public static void checkOrder(double[] val, OrderDirection dir,
boolean strict) throws NonMonotonicSequenceException {
checkOrder(val, dir, strict, true);
}
/**
* Check that the given array is sorted in strictly increasing order.
*
* @param val Values.
* @throws NonMonotonicSequenceException if the array is not sorted.
* @since 2.2
*/
public static void checkOrder(double[] val) throws NonMonotonicSequenceException {
checkOrder(val, OrderDirection.INCREASING, true);
}
/**
* Throws DimensionMismatchException if the input array is not rectangular.
*
* @param in array to be tested
* @throws NullArgumentException if input array is null
* @throws DimensionMismatchException if input array is not rectangular
* @since 3.1
*/
public static void checkRectangular(final long[][] in)
throws NullArgumentException, DimensionMismatchException {
MathUtils.checkNotNull(in);
for (int i = 1; i < in.length; i++) {
if (in[i].length != in[0].length) {
throw new DimensionMismatchException(
LocalizedFormats.DIFFERENT_ROWS_LENGTHS,
in[i].length, in[0].length);
}
}
}
/**
* Check that all entries of the input array are strictly positive.
*
* @param in Array to be tested
* @throws NotStrictlyPositiveException if any entries of the array are not
* strictly positive.
* @since 3.1
*/
public static void checkPositive(final double[] in)
throws NotStrictlyPositiveException {
for (int i = 0; i < in.length; i++) {
if (in[i] <= 0) {
throw new NotStrictlyPositiveException(in[i]);
}
}
}
/**
* Check that all entries of the input array are >= 0.
*
* @param in Array to be tested
* @throws NotPositiveException if any array entries are less than 0.
* @since 3.1
*/
public static void checkNonNegative(final long[] in)
throws NotPositiveException {
for (int i = 0; i < in.length; i++) {
if (in[i] < 0) {
throw new NotPositiveException(in[i]);
}
}
}
/**
* Check all entries of the input array are >= 0.
*
* @param in Array to be tested
* @throws NotPositiveException if any array entries are less than 0.
* @since 3.1
*/
public static void checkNonNegative(final long[][] in)
throws NotPositiveException {
for (int i = 0; i < in.length; i ++) {
for (int j = 0; j < in[i].length; j++) {
if (in[i][j] < 0) {
throw new NotPositiveException(in[i][j]);
}
}
}
}
/**
* Returns the Cartesian norm (2-norm), handling both overflow and underflow.
* Translation of the minpack enorm subroutine.
*
* The redistribution policy for MINPACK is available
* here, for
* convenience, it is reproduced below.
*
*
*
* Minpack Copyright Notice (1999) University of Chicago.
* All rights reserved
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* - The end-user documentation included with the redistribution, if any,
* must include the following acknowledgment:
* {@code This product includes software developed by the University of
* Chicago, as Operator of Argonne National Laboratory.}
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
* - WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
* WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
* UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
* THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
* OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
* OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
* USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
* THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
* DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
* UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
* BE CORRECTED.
* - LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
* HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
* ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
* INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
* ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
* PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
* SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
* (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
* EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
* POSSIBILITY OF SUCH LOSS OR DAMAGES.
*
*
*
* @param v Vector of doubles.
* @return the 2-norm of the vector.
* @since 2.2
*/
public static double safeNorm(double[] v) {
double rdwarf = 3.834e-20;
double rgiant = 1.304e+19;
double s1 = 0;
double s2 = 0;
double s3 = 0;
double x1max = 0;
double x3max = 0;
double floatn = v.length;
double agiant = rgiant / floatn;
for (int i = 0; i < v.length; i++) {
double xabs = Math.abs(v[i]);
if (xabs < rdwarf || xabs > agiant) {
if (xabs > rdwarf) {
if (xabs > x1max) {
double r = x1max / xabs;
s1= 1 + s1 * r * r;
x1max = xabs;
} else {
double r = xabs / x1max;
s1 += r * r;
}
} else {
if (xabs > x3max) {
double r = x3max / xabs;
s3= 1 + s3 * r * r;
x3max = xabs;
} else {
if (xabs != 0) {
double r = xabs / x3max;
s3 += r * r;
}
}
}
} else {
s2 += xabs * xabs;
}
}
double norm;
if (s1 != 0) {
norm = x1max * Math.sqrt(s1 + (s2 / x1max) / x1max);
} else {
if (s2 == 0) {
norm = x3max * Math.sqrt(s3);
} else {
if (s2 >= x3max) {
norm = Math.sqrt(s2 * (1 + (x3max / s2) * (x3max * s3)));
} else {
norm = Math.sqrt(x3max * ((s2 / x3max) + (x3max * s3)));
}
}
}
return norm;
}
/**
* Sort an array in ascending order in place and perform the same reordering
* of entries on other arrays. For example, if
* {@code x = [3, 1, 2], y = [1, 2, 3]} and {@code z = [0, 5, 7]}, then
* {@code sortInPlace(x, y, z)} will update {@code x} to {@code [1, 2, 3]},
* {@code y} to {@code [2, 3, 1]} and {@code z} to {@code [5, 7, 0]}.
*
* @param x Array to be sorted and used as a pattern for permutation
* of the other arrays.
* @param yList Set of arrays whose permutations of entries will follow
* those performed on {@code x}.
* @throws DimensionMismatchException if any {@code y} is not the same
* size as {@code x}.
* @throws NullArgumentException if {@code x} or any {@code y} is null.
* @since 3.0
*/
public static void sortInPlace(double[] x, double[] ... yList)
throws DimensionMismatchException, NullArgumentException {
sortInPlace(x, OrderDirection.INCREASING, yList);
}
/**
* Sort an array in place and perform the same reordering of entries on
* other arrays. This method works the same as the other
* {@link #sortInPlace(double[], double[][]) sortInPlace} method, but
* allows the order of the sort to be provided in the {@code dir}
* parameter.
*
* @param x Array to be sorted and used as a pattern for permutation
* of the other arrays.
* @param dir Order direction.
* @param yList Set of arrays whose permutations of entries will follow
* those performed on {@code x}.
* @throws DimensionMismatchException if any {@code y} is not the same
* size as {@code x}.
* @throws NullArgumentException if {@code x} or any {@code y} is null
* @since 3.0
*/
public static void sortInPlace(double[] x,
final OrderDirection dir,
double[] ... yList)
throws NullArgumentException,
DimensionMismatchException {
// Consistency checks.
if (x == null) {
throw new NullArgumentException();
}
final int yListLen = yList.length;
final int len = x.length;
for (int j = 0; j < yListLen; j++) {
final double[] y = yList[j];
if (y == null) {
throw new NullArgumentException();
}
if (y.length != len) {
throw new DimensionMismatchException(y.length, len);
}
}
// Associate each abscissa "x[i]" with its index "i".
final List> list
= new ArrayList>(len);
for (int i = 0; i < len; i++) {
list.add(new Pair(x[i], i));
}
// Create comparators for increasing and decreasing orders.
final Comparator> comp
= dir == MathArrays.OrderDirection.INCREASING ?
new Comparator>() {
public int compare(Pair o1,
Pair o2) {
return o1.getKey().compareTo(o2.getKey());
}
} : new Comparator>() {
public int compare(Pair o1,
Pair o2) {
return o2.getKey().compareTo(o1.getKey());
}
};
// Sort.
Collections.sort(list, comp);
// Modify the original array so that its elements are in
// the prescribed order.
// Retrieve indices of original locations.
final int[] indices = new int[len];
for (int i = 0; i < len; i++) {
final Pair e = list.get(i);
x[i] = e.getKey();
indices[i] = e.getValue();
}
// In each of the associated arrays, move the
// elements to their new location.
for (int j = 0; j < yListLen; j++) {
// Input array will be modified in place.
final double[] yInPlace = yList[j];
final double[] yOrig = yInPlace.clone();
for (int i = 0; i < len; i++) {
yInPlace[i] = yOrig[indices[i]];
}
}
}
/**
* Creates a copy of the {@code source} array.
*
* @param source Array to be copied.
* @return the copied array.
*/
public static int[] copyOf(int[] source) {
return copyOf(source, source.length);
}
/**
* Creates a copy of the {@code source} array.
*
* @param source Array to be copied.
* @return the copied array.
*/
public static double[] copyOf(double[] source) {
return copyOf(source, source.length);
}
/**
* Creates a copy of the {@code source} array.
*
* @param source Array to be copied.
* @param len Number of entries to copy. If smaller then the source
* length, the copy will be truncated, if larger it will padded with
* zeroes.
* @return the copied array.
*/
public static int[] copyOf(int[] source, int len) {
final int[] output = new int[len];
System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length));
return output;
}
/**
* Creates a copy of the {@code source} array.
*
* @param source Array to be copied.
* @param len Number of entries to copy. If smaller then the source
* length, the copy will be truncated, if larger it will padded with
* zeroes.
* @return the copied array.
*/
public static double[] copyOf(double[] source, int len) {
final double[] output = new double[len];
System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length));
return output;
}
/**
* Compute a linear combination accurately.
* This method computes the sum of the products
* ai bi
to high accuracy.
* It does so by using specific multiplication and addition algorithms to
* preserve accuracy and reduce cancellation effects.
*
* It is based on the 2005 paper
*
* Accurate Sum and Dot Product by Takeshi Ogita, Siegfried M. Rump,
* and Shin'ichi Oishi published in SIAM J. Sci. Comput.
*
* @param a Factors.
* @param b Factors.
* @return Σi ai bi
.
* @throws DimensionMismatchException if arrays dimensions don't match
*/
public static double linearCombination(final double[] a, final double[] b)
throws DimensionMismatchException {
final int len = a.length;
if (len != b.length) {
throw new DimensionMismatchException(len, b.length);
}
if (len == 1) {//Math-3
// Revert to scalar multiplication.
return a[0] * b[0];
}
final double[] prodHigh = new double[len];
double prodLowSum = 0;
for (int i = 0; i < len; i++) {
final double ai = a[i];
final double ca = SPLIT_FACTOR * ai;
final double aHigh = ca - (ca - ai);
final double aLow = ai - aHigh;
final double bi = b[i];
final double cb = SPLIT_FACTOR * bi;
final double bHigh = cb - (cb - bi);
final double bLow = bi - bHigh;
prodHigh[i] = ai * bi;
final double prodLow = aLow * bLow - (((prodHigh[i] -
aHigh * bHigh) -
aLow * bHigh) -
aHigh * bLow);
prodLowSum += prodLow;
}
final double prodHighCur = prodHigh[0];
double prodHighNext = prodHigh[1];
double sHighPrev = prodHighCur + prodHighNext;
double sPrime = sHighPrev - prodHighNext;
double sLowSum = (prodHighNext - (sHighPrev - sPrime)) + (prodHighCur - sPrime);
final int lenMinusOne = len - 1;
for (int i = 1; i < lenMinusOne; i++) {
prodHighNext = prodHigh[i + 1];
final double sHighCur = sHighPrev + prodHighNext;
sPrime = sHighCur - prodHighNext;
sLowSum += (prodHighNext - (sHighCur - sPrime)) + (sHighPrev - sPrime);
sHighPrev = sHighCur;
}
double result = sHighPrev + (prodLowSum + sLowSum);
if (Double.isNaN(result)) {
// either we have split infinite numbers or some coefficients were NaNs,
// just rely on the naive implementation and let IEEE754 handle this
result = 0;
for (int i = 0; i < len; ++i) {
result += a[i] * b[i];
}
}
return result;
}
/**
* Compute a linear combination accurately.
*
* This method computes a1×b1 +
* a2×b2 to high accuracy. It does
* so by using specific multiplication and addition algorithms to
* preserve accuracy and reduce cancellation effects. It is based
* on the 2005 paper
* Accurate Sum and Dot Product by Takeshi Ogita,
* Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
*
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @return a1×b1 +
* a2×b2
* @see #linearCombination(double, double, double, double, double, double)
* @see #linearCombination(double, double, double, double, double, double, double, double)
*/
public static double linearCombination(final double a1, final double b1,
final double a2, final double b2) {
// the code below is split in many additions/subtractions that may
// appear redundant. However, they should NOT be simplified, as they
// use IEEE754 floating point arithmetic rounding properties.
// as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1"
// The variable naming conventions are that xyzHigh contains the most significant
// bits of xyz and xyzLow contains its least significant bits. So theoretically
// xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
// be represented in only one double precision number so we preserve two numbers
// to hold it as long as we can, combining the high and low order bits together
// only at the end, after cancellation may have occurred on high order bits
// split a1 and b1 as two 26 bits numbers
final double ca1 = SPLIT_FACTOR * a1;
final double a1High = ca1 - (ca1 - a1);
final double a1Low = a1 - a1High;
final double cb1 = SPLIT_FACTOR * b1;
final double b1High = cb1 - (cb1 - b1);
final double b1Low = b1 - b1High;
// accurate multiplication a1 * b1
final double prod1High = a1 * b1;
final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);
// split a2 and b2 as two 26 bits numbers
final double ca2 = SPLIT_FACTOR * a2;
final double a2High = ca2 - (ca2 - a2);
final double a2Low = a2 - a2High;
final double cb2 = SPLIT_FACTOR * b2;
final double b2High = cb2 - (cb2 - b2);
final double b2Low = b2 - b2High;
// accurate multiplication a2 * b2
final double prod2High = a2 * b2;
final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);
// accurate addition a1 * b1 + a2 * b2
final double s12High = prod1High + prod2High;
final double s12Prime = s12High - prod2High;
final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);
// final rounding, s12 may have suffered many cancellations, we try
// to recover some bits from the extra words we have saved up to now
double result = s12High + (prod1Low + prod2Low + s12Low);
if (Double.isNaN(result)) {
// either we have split infinite numbers or some coefficients were NaNs,
// just rely on the naive implementation and let IEEE754 handle this
result = a1 * b1 + a2 * b2;
}
return result;
}
/**
* Compute a linear combination accurately.
*
* This method computes a1×b1 +
* a2×b2 + a3×b3
* to high accuracy. It does so by using specific multiplication and
* addition algorithms to preserve accuracy and reduce cancellation effects.
* It is based on the 2005 paper
* Accurate Sum and Dot Product by Takeshi Ogita,
* Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
*
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @param a3 first factor of the third term
* @param b3 second factor of the third term
* @return a1×b1 +
* a2×b2 + a3×b3
* @see #linearCombination(double, double, double, double)
* @see #linearCombination(double, double, double, double, double, double, double, double)
*/
public static double linearCombination(final double a1, final double b1,
final double a2, final double b2,
final double a3, final double b3) {
// the code below is split in many additions/subtractions that may
// appear redundant. However, they should NOT be simplified, as they
// do use IEEE754 floating point arithmetic rounding properties.
// as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1"
// The variables naming conventions are that xyzHigh contains the most significant
// bits of xyz and xyzLow contains its least significant bits. So theoretically
// xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
// be represented in only one double precision number so we preserve two numbers
// to hold it as long as we can, combining the high and low order bits together
// only at the end, after cancellation may have occurred on high order bits
// split a1 and b1 as two 26 bits numbers
final double ca1 = SPLIT_FACTOR * a1;
final double a1High = ca1 - (ca1 - a1);
final double a1Low = a1 - a1High;
final double cb1 = SPLIT_FACTOR * b1;
final double b1High = cb1 - (cb1 - b1);
final double b1Low = b1 - b1High;
// accurate multiplication a1 * b1
final double prod1High = a1 * b1;
final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);
// split a2 and b2 as two 26 bits numbers
final double ca2 = SPLIT_FACTOR * a2;
final double a2High = ca2 - (ca2 - a2);
final double a2Low = a2 - a2High;
final double cb2 = SPLIT_FACTOR * b2;
final double b2High = cb2 - (cb2 - b2);
final double b2Low = b2 - b2High;
// accurate multiplication a2 * b2
final double prod2High = a2 * b2;
final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);
// split a3 and b3 as two 26 bits numbers
final double ca3 = SPLIT_FACTOR * a3;
final double a3High = ca3 - (ca3 - a3);
final double a3Low = a3 - a3High;
final double cb3 = SPLIT_FACTOR * b3;
final double b3High = cb3 - (cb3 - b3);
final double b3Low = b3 - b3High;
// accurate multiplication a3 * b3
final double prod3High = a3 * b3;
final double prod3Low = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low);
// accurate addition a1 * b1 + a2 * b2
final double s12High = prod1High + prod2High;
final double s12Prime = s12High - prod2High;
final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);
// accurate addition a1 * b1 + a2 * b2 + a3 * b3
final double s123High = s12High + prod3High;
final double s123Prime = s123High - prod3High;
final double s123Low = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime);
// final rounding, s123 may have suffered many cancellations, we try
// to recover some bits from the extra words we have saved up to now
double result = s123High + (prod1Low + prod2Low + prod3Low + s12Low + s123Low);
if (Double.isNaN(result)) {
// either we have split infinite numbers or some coefficients were NaNs,
// just rely on the naive implementation and let IEEE754 handle this
result = a1 * b1 + a2 * b2 + a3 * b3;
}
return result;
}
/**
* Compute a linear combination accurately.
*
* This method computes a1×b1 +
* a2×b2 + a3×b3 +
* a4×b4
* to high accuracy. It does so by using specific multiplication and
* addition algorithms to preserve accuracy and reduce cancellation effects.
* It is based on the 2005 paper
* Accurate Sum and Dot Product by Takeshi Ogita,
* Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput.
*
* @param a1 first factor of the first term
* @param b1 second factor of the first term
* @param a2 first factor of the second term
* @param b2 second factor of the second term
* @param a3 first factor of the third term
* @param b3 second factor of the third term
* @param a4 first factor of the third term
* @param b4 second factor of the third term
* @return a1×b1 +
* a2×b2 + a3×b3 +
* a4×b4
* @see #linearCombination(double, double, double, double)
* @see #linearCombination(double, double, double, double, double, double)
*/
public static double linearCombination(final double a1, final double b1,
final double a2, final double b2,
final double a3, final double b3,
final double a4, final double b4) {
// the code below is split in many additions/subtractions that may
// appear redundant. However, they should NOT be simplified, as they
// do use IEEE754 floating point arithmetic rounding properties.
// as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1"
// The variables naming conventions are that xyzHigh contains the most significant
// bits of xyz and xyzLow contains its least significant bits. So theoretically
// xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot
// be represented in only one double precision number so we preserve two numbers
// to hold it as long as we can, combining the high and low order bits together
// only at the end, after cancellation may have occurred on high order bits
// split a1 and b1 as two 26 bits numbers
final double ca1 = SPLIT_FACTOR * a1;
final double a1High = ca1 - (ca1 - a1);
final double a1Low = a1 - a1High;
final double cb1 = SPLIT_FACTOR * b1;
final double b1High = cb1 - (cb1 - b1);
final double b1Low = b1 - b1High;
// accurate multiplication a1 * b1
final double prod1High = a1 * b1;
final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low);
// split a2 and b2 as two 26 bits numbers
final double ca2 = SPLIT_FACTOR * a2;
final double a2High = ca2 - (ca2 - a2);
final double a2Low = a2 - a2High;
final double cb2 = SPLIT_FACTOR * b2;
final double b2High = cb2 - (cb2 - b2);
final double b2Low = b2 - b2High;
// accurate multiplication a2 * b2
final double prod2High = a2 * b2;
final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low);
// split a3 and b3 as two 26 bits numbers
final double ca3 = SPLIT_FACTOR * a3;
final double a3High = ca3 - (ca3 - a3);
final double a3Low = a3 - a3High;
final double cb3 = SPLIT_FACTOR * b3;
final double b3High = cb3 - (cb3 - b3);
final double b3Low = b3 - b3High;
// accurate multiplication a3 * b3
final double prod3High = a3 * b3;
final double prod3Low = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low);
// split a4 and b4 as two 26 bits numbers
final double ca4 = SPLIT_FACTOR * a4;
final double a4High = ca4 - (ca4 - a4);
final double a4Low = a4 - a4High;
final double cb4 = SPLIT_FACTOR * b4;
final double b4High = cb4 - (cb4 - b4);
final double b4Low = b4 - b4High;
// accurate multiplication a4 * b4
final double prod4High = a4 * b4;
final double prod4Low = a4Low * b4Low - (((prod4High - a4High * b4High) - a4Low * b4High) - a4High * b4Low);
// accurate addition a1 * b1 + a2 * b2
final double s12High = prod1High + prod2High;
final double s12Prime = s12High - prod2High;
final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime);
// accurate addition a1 * b1 + a2 * b2 + a3 * b3
final double s123High = s12High + prod3High;
final double s123Prime = s123High - prod3High;
final double s123Low = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime);
// accurate addition a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4
final double s1234High = s123High + prod4High;
final double s1234Prime = s1234High - prod4High;
final double s1234Low = (prod4High - (s1234High - s1234Prime)) + (s123High - s1234Prime);
// final rounding, s1234 may have suffered many cancellations, we try
// to recover some bits from the extra words we have saved up to now
double result = s1234High + (prod1Low + prod2Low + prod3Low + prod4Low + s12Low + s123Low + s1234Low);
if (Double.isNaN(result)) {
// either we have split infinite numbers or some coefficients were NaNs,
// just rely on the naive implementation and let IEEE754 handle this
result = a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4;
}
return result;
}
/**
* Returns true iff both arguments are null or have same dimensions and all
* their elements are equal as defined by
* {@link Precision#equals(float,float)}.
*
* @param x first array
* @param y second array
* @return true if the values are both null or have same dimension
* and equal elements.
*/
public static boolean equals(float[] x, float[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!Precision.equals(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Returns true iff both arguments are null or have same dimensions and all
* their elements are equal as defined by
* {@link Precision#equalsIncludingNaN(double,double) this method}.
*
* @param x first array
* @param y second array
* @return true if the values are both null or have same dimension and
* equal elements
* @since 2.2
*/
public static boolean equalsIncludingNaN(float[] x, float[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!Precision.equalsIncludingNaN(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Returns {@code true} iff both arguments are {@code null} or have same
* dimensions and all their elements are equal as defined by
* {@link Precision#equals(double,double)}.
*
* @param x First array.
* @param y Second array.
* @return {@code true} if the values are both {@code null} or have same
* dimension and equal elements.
*/
public static boolean equals(double[] x, double[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!Precision.equals(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Returns {@code true} iff both arguments are {@code null} or have same
* dimensions and all their elements are equal as defined by
* {@link Precision#equalsIncludingNaN(double,double) this method}.
*
* @param x First array.
* @param y Second array.
* @return {@code true} if the values are both {@code null} or have same
* dimension and equal elements.
* @since 2.2
*/
public static boolean equalsIncludingNaN(double[] x, double[] y) {
if ((x == null) || (y == null)) {
return !((x == null) ^ (y == null));
}
if (x.length != y.length) {
return false;
}
for (int i = 0; i < x.length; ++i) {
if (!Precision.equalsIncludingNaN(x[i], y[i])) {
return false;
}
}
return true;
}
/**
* Normalizes an array to make it sum to a specified value.
* Returns the result of the transformation
* x |-> x * normalizedSum / sum
*
* applied to each non-NaN element x of the input array, where sum is the
* sum of the non-NaN entries in the input array.
*
* Throws IllegalArgumentException if {@code normalizedSum} is infinite
* or NaN and ArithmeticException if the input array contains any infinite elements
* or sums to 0.
*
* Ignores (i.e., copies unchanged to the output array) NaNs in the input array.
*
* @param values Input array to be normalized
* @param normalizedSum Target sum for the normalized array
* @return the normalized array.
* @throws MathArithmeticException if the input array contains infinite
* elements or sums to zero.
* @throws MathIllegalArgumentException if the target sum is infinite or {@code NaN}.
* @since 2.1
*/
public static double[] normalizeArray(double[] values, double normalizedSum)
throws MathIllegalArgumentException, MathArithmeticException {
if (Double.isInfinite(normalizedSum)) {
throw new MathIllegalArgumentException(LocalizedFormats.NORMALIZE_INFINITE);
}
if (Double.isNaN(normalizedSum)) {
throw new MathIllegalArgumentException(LocalizedFormats.NORMALIZE_NAN);
}
double sum = 0d;
final int len = values.length;
double[] out = new double[len];
for (int i = 0; i < len; i++) {
if (Double.isInfinite(values[i])) {
throw new MathIllegalArgumentException(LocalizedFormats.INFINITE_ARRAY_ELEMENT, values[i], i);
}
if (!Double.isNaN(values[i])) {
sum += values[i];
}
}
if (sum == 0) {
throw new MathArithmeticException(LocalizedFormats.ARRAY_SUMS_TO_ZERO);
}
for (int i = 0; i < len; i++) {
if (Double.isNaN(values[i])) {
out[i] = Double.NaN;
} else {
out[i] = values[i] * normalizedSum / sum;
}
}
return out;
}
/** Build an array of elements.
*
* Arrays are filled with field.getZero()
*
* @param the type of the field elements
* @param field field to which array elements belong
* @param length of the array
* @return a new array
* @since 3.2
*/
public static T[] buildArray(final Field field, final int length) {
@SuppressWarnings("unchecked") // OK because field must be correct class
T[] array = (T[]) Array.newInstance(field.getRuntimeClass(), length);
Arrays.fill(array, field.getZero());
return array;
}
/** Build a double dimension array of elements.
*
* Arrays are filled with field.getZero()
*
* @param the type of the field elements
* @param field field to which array elements belong
* @param rows number of rows in the array
* @param columns number of columns (may be negative to build partial
* arrays in the same way new Field[rows][]
works)
* @return a new array
* @since 3.2
*/
@SuppressWarnings("unchecked")
public static T[][] buildArray(final Field field, final int rows, final int columns) {
final T[][] array;
if (columns < 0) {
T[] dummyRow = buildArray(field, 0);
array = (T[][]) Array.newInstance(dummyRow.getClass(), rows);
} else {
array = (T[][]) Array.newInstance(field.getRuntimeClass(),
new int[] {
rows, columns
});
for (int i = 0; i < rows; ++i) {
Arrays.fill(array[i], field.getZero());
}
}
return array;
}
/**
* Calculates the
* convolution between two sequences.
* The solution is obtained via straightforward computation of the
* convolution sum (and not via FFT).
* Whenever the computation needs an element that would be located
* at an index outside the input arrays, the value is assumed to be
* zero.
*
* @param x First sequence.
* Typically, this sequence will represent an input signal to a system.
* @param h Second sequence.
* Typically, this sequence will represent the impulse response of the
* system.
* @return the convolution of {@code x} and {@code h}.
* This array's length will be {@code x.length + h.length - 1}.
* @throws NullArgumentException if either {@code x} or {@code h} is
* {@code null}.
* @throws NoDataException if either {@code x} or {@code h} is empty.
*
* @since 3.3
*/
public static double[] convolve(double[] x, double[] h)
throws NullArgumentException,
NoDataException {
MathUtils.checkNotNull(x);
MathUtils.checkNotNull(h);
final int xLen = x.length;
final int hLen = h.length;
if (xLen == 0 || hLen == 0) {
throw new NoDataException();
}
// initialize the output array
final int totalLength = xLen + hLen - 1;
final double[] y = new double[totalLength];
// straightforward implementation of the convolution sum
for (int n = 0; n < totalLength; n++) {
double yn = 0;
int k = FastMath.max(0, n + 1 - xLen);
int j = n - k;
while (k < hLen && j >= 0) {
yn += x[j--] * h[k++];
}
y[n] = yn;
}
return y;
}
}