All Downloads are FREE. Search and download functionalities are using the official Maven repository.

casesDj4.math_4.SubLine_t Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.twod;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.geometry.euclidean.oned.Euclidean1D;
import org.apache.commons.math3.geometry.euclidean.oned.Interval;
import org.apache.commons.math3.geometry.euclidean.oned.IntervalsSet;
import org.apache.commons.math3.geometry.euclidean.oned.OrientedPoint;
import org.apache.commons.math3.geometry.euclidean.oned.Vector1D;
import org.apache.commons.math3.geometry.partitioning.AbstractSubHyperplane;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.Hyperplane;
import org.apache.commons.math3.geometry.partitioning.Region;
import org.apache.commons.math3.geometry.partitioning.Region.Location;
import org.apache.commons.math3.geometry.partitioning.Side;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.util.FastMath;

/**
 * This class represents a sub-hyperplane for {@link Line}.
 * 
 * @version $Id$
 * @since 3.0
 */
public class SubLine extends AbstractSubHyperplane {

	/**
	 * Simple constructor.
	 * 
	 * @param hyperplane      underlying hyperplane
	 * @param remainingRegion remaining region of the hyperplane
	 */
	public SubLine(final Hyperplane hyperplane, final Region remainingRegion) {
		super(hyperplane, remainingRegion);
	}

	/**
	 * Create a sub-line from two endpoints.
	 * 
	 * @param start start point
	 * @param end   end point
	 */
	public SubLine(final Vector2D start, final Vector2D end) {
		super(new Line(start, end), buildIntervalSet(start, end));
	}

	/**
	 * Create a sub-line from a segment.
	 * 
	 * @param segment single segment forming the sub-line
	 */
	public SubLine(final Segment segment) {
		super(segment.getLine(), buildIntervalSet(segment.getStart(), segment.getEnd()));
	}

	/**
	 * Get the endpoints of the sub-line.
	 * 

* A subline may be any arbitrary number of disjoints segments, so the endpoints * are provided as a list of endpoint pairs. Each element of the list represents * one segment, and each segment contains a start point at index 0 and an end * point at index 1. If the sub-line is unbounded in the negative infinity * direction, the start point of the first segment will have infinite * coordinates. If the sub-line is unbounded in the positive infinity direction, * the end point of the last segment will have infinite coordinates. So a * sub-line covering the whole line will contain just one row and both elements * of this row will have infinite coordinates. If the sub-line is empty, the * returned list will contain 0 segments. *

* * @return list of segments endpoints */ public List getSegments() { final Line line = (Line) getHyperplane(); final List list = ((IntervalsSet) getRemainingRegion()).asList(); final List segments = new ArrayList(); for (final Interval interval : list) { final Vector2D start = line.toSpace(new Vector1D(interval.getInf())); final Vector2D end = line.toSpace(new Vector1D(interval.getSup())); segments.add(new Segment(start, end, line)); } return segments; } /** * Get the intersection of the instance and another sub-line. *

* This method is related to the {@link Line#intersection(Line) intersection} * method in the {@link Line Line} class, but in addition to compute the point * along infinite lines, it also checks the point lies on both sub-line ranges. *

* * @param subLine other sub-line which may intersect instance * @param includeEndPoints if true, endpoints are considered to belong to * instance (i.e. they are closed sets) and may be * returned, otherwise endpoints are considered to not * belong to instance (i.e. they are open sets) and * intersection occurring on endpoints lead to null * being returned * @return the intersection point if there is one, null if the sub-lines don't * intersect */ public Vector2D intersection(final SubLine subLine, final boolean includeEndPoints) { // retrieve the underlying lines Line line1 = (Line) getHyperplane(); Line line2 = (Line) subLine.getHyperplane(); // compute the intersection on infinite line Vector2D v2D = line1.intersection(line2); if (v2D == null) {//Math-4 return null; } // check location of point with respect to first sub-line Location loc1 = getRemainingRegion().checkPoint(line1.toSubSpace(v2D)); // check location of point with respect to second sub-line Location loc2 = subLine.getRemainingRegion().checkPoint(line2.toSubSpace(v2D)); if (includeEndPoints) { return ((loc1 != Location.OUTSIDE) && (loc2 != Location.OUTSIDE)) ? v2D : null; } else { return ((loc1 == Location.INSIDE) && (loc2 == Location.INSIDE)) ? v2D : null; } } /** * Build an interval set from two points. * * @param start start point * @param end end point * @return an interval set */ private static IntervalsSet buildIntervalSet(final Vector2D start, final Vector2D end) { final Line line = new Line(start, end); return new IntervalsSet(line.toSubSpace(start).getX(), line.toSubSpace(end).getX()); } /** {@inheritDoc} */ @Override protected AbstractSubHyperplane buildNew(final Hyperplane hyperplane, final Region remainingRegion) { return new SubLine(hyperplane, remainingRegion); } /** {@inheritDoc} */ @Override public Side side(final Hyperplane hyperplane) { final Line thisLine = (Line) getHyperplane(); final Line otherLine = (Line) hyperplane; final Vector2D crossing = thisLine.intersection(otherLine); if (crossing == null) { // the lines are parallel, final double global = otherLine.getOffset(thisLine); return (global < -1.0e-10) ? Side.MINUS : ((global > 1.0e-10) ? Side.PLUS : Side.HYPER); } // the lines do intersect final boolean direct = FastMath.sin(thisLine.getAngle() - otherLine.getAngle()) < 0; final Vector1D x = thisLine.toSubSpace(crossing); return getRemainingRegion().side(new OrientedPoint(x, direct)); } /** {@inheritDoc} */ @Override public SplitSubHyperplane split(final Hyperplane hyperplane) { final Line thisLine = (Line) getHyperplane(); final Line otherLine = (Line) hyperplane; final Vector2D crossing = thisLine.intersection(otherLine); if (crossing == null) { // the lines are parallel final double global = otherLine.getOffset(thisLine); return (global < -1.0e-10) ? new SplitSubHyperplane(null, this) : new SplitSubHyperplane(this, null); } // the lines do intersect final boolean direct = FastMath.sin(thisLine.getAngle() - otherLine.getAngle()) < 0; final Vector1D x = thisLine.toSubSpace(crossing); final SubHyperplane subPlus = new OrientedPoint(x, !direct).wholeHyperplane(); final SubHyperplane subMinus = new OrientedPoint(x, direct).wholeHyperplane(); final BSPTree splitTree = getRemainingRegion().getTree(false).split(subMinus); final BSPTree plusTree = getRemainingRegion().isEmpty(splitTree.getPlus()) ? new BSPTree(Boolean.FALSE) : new BSPTree(subPlus, new BSPTree(Boolean.FALSE), splitTree.getPlus(), null); final BSPTree minusTree = getRemainingRegion().isEmpty(splitTree.getMinus()) ? new BSPTree(Boolean.FALSE) : new BSPTree(subMinus, new BSPTree(Boolean.FALSE), splitTree.getMinus(), null); return new SplitSubHyperplane(new SubLine(thisLine.copySelf(), new IntervalsSet(plusTree)), new SubLine(thisLine.copySelf(), new IntervalsSet(minusTree))); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy