All Downloads are FREE. Search and download functionalities are using the official Maven repository.

casesDj4.math_53.Complex_t Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.complex;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math.FieldElement;
import org.apache.commons.math.MathRuntimeException;
import org.apache.commons.math.exception.NullArgumentException;
import org.apache.commons.math.exception.util.LocalizedFormats;
import org.apache.commons.math.util.MathUtils;
import org.apache.commons.math.util.FastMath;

/**
 * Representation of a Complex number - a number which has both a real and
 * imaginary part.
 * 

* Implementations of arithmetic operations handle NaN and infinite * values according to the rules for {@link java.lang.Double} arithmetic, * applying definitional formulas and returning NaN or infinite * values in real or imaginary parts as these arise in computation. See * individual method javadocs for details. *

*

* {@link #equals} identifies all values with NaN in either real or * imaginary part - e.g., * *

 * 1 + NaNi  == NaN + i == NaN + NaNi.
 * 
*

* * implements Serializable since 2.0 * * @version $Id$ */ public class Complex implements FieldElement, Serializable { /** The square root of -1. A number representing "0.0 + 1.0i" */ public static final Complex I = new Complex(0.0, 1.0); // CHECKSTYLE: stop ConstantName /** A complex number representing "NaN + NaNi" */ public static final Complex NaN = new Complex(Double.NaN, Double.NaN); // CHECKSTYLE: resume ConstantName /** A complex number representing "+INF + INFi" */ public static final Complex INF = new Complex(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY); /** A complex number representing "1.0 + 0.0i" */ public static final Complex ONE = new Complex(1.0, 0.0); /** A complex number representing "0.0 + 0.0i" */ public static final Complex ZERO = new Complex(0.0, 0.0); /** Serializable version identifier */ private static final long serialVersionUID = -6195664516687396620L; /** The imaginary part. */ private final double imaginary; /** The real part. */ private final double real; /** Record whether this complex number is equal to NaN. */ private final transient boolean isNaN; /** Record whether this complex number is infinite. */ private final transient boolean isInfinite; /** * Create a complex number given the real and imaginary parts. * * @param real the real part * @param imaginary the imaginary part */ public Complex(double real, double imaginary) { super(); this.real = real; this.imaginary = imaginary; isNaN = Double.isNaN(real) || Double.isNaN(imaginary); isInfinite = !isNaN && (Double.isInfinite(real) || Double.isInfinite(imaginary)); } /** * Return the absolute value of this complex number. *

* Returns NaN if either real or imaginary part is NaN * and Double.POSITIVE_INFINITY if neither part is * NaN, but at least one part takes an infinite value. *

* * @return the absolute value */ public double abs() { if (isNaN) { return Double.NaN; } if (isInfinite()) { return Double.POSITIVE_INFINITY; } if (FastMath.abs(real) < FastMath.abs(imaginary)) { if (imaginary == 0.0) { return FastMath.abs(real); } double q = real / imaginary; return FastMath.abs(imaginary) * FastMath.sqrt(1 + q * q); } else { if (real == 0.0) { return FastMath.abs(imaginary); } double q = imaginary / real; return FastMath.abs(real) * FastMath.sqrt(1 + q * q); } } /** * Return the sum of this complex number and the given complex number. *

* Uses the definitional formula * *

	 * (a + bi) + (c + di) = (a+c) + (b+d)i
	 * 
*

*

* If either this or rhs has a NaN value in either part, * {@link #NaN} is returned; otherwise Infinite and NaN values are returned in * the parts of the result according to the rules for {@link java.lang.Double} * arithmetic. *

* * @param rhs the other complex number * @return the complex number sum * @throws NullArgumentException if rhs is null */ public Complex add(Complex rhs) throws NullArgumentException { MathUtils.checkNotNull(rhs); if (isNaN || rhs.isNaN) {//Math-53 return NaN; } return createComplex(real + rhs.getReal(), imaginary + rhs.getImaginary()); } /** * Return the conjugate of this complex number. The conjugate of "A + Bi" is "A * - Bi". *

* {@link #NaN} is returned if either the real or imaginary part of this Complex * number equals Double.NaN. *

*

* If the imaginary part is infinite, and the real part is not NaN, the returned * value has infinite imaginary part of the opposite sign - e.g. the conjugate * of 1 + POSITIVE_INFINITY i is * 1 - NEGATIVE_INFINITY i *

* * @return the conjugate of this Complex object */ public Complex conjugate() { if (isNaN) { return NaN; } return createComplex(real, -imaginary); } /** * Return the quotient of this complex number and the given complex number. *

* Implements the definitional formula * *

	 * 
	 *    a + bi          ac + bd + (bc - ad)i
	 *    ----------- = -------------------------
	 *    c + di         c2 + d2
	 * 
	 * 
* * but uses prescaling of * operands to limit the effects of overflows and underflows in the * computation. *

*

* Infinite and NaN values are handled / returned according to the following * rules, applied in the order presented: *

    *
  • If either this or rhs has a NaN value in either part, * {@link #NaN} is returned.
  • *
  • If rhs equals {@link #ZERO}, {@link #NaN} is returned.
  • *
  • If this and rhs are both infinite, {@link #NaN} is * returned.
  • *
  • If this is finite (i.e., has no infinite or NaN parts) and * rhs is infinite (one or both parts infinite), {@link #ZERO} is * returned.
  • *
  • If this is infinite and rhs is finite, NaN values are * returned in the parts of the result if the {@link java.lang.Double} rules * applied to the definitional formula force NaN results.
  • *
*

* * @param rhs the other complex number * @return the complex number quotient * @throws NullArgumentException if rhs is null */ public Complex divide(Complex rhs) throws NullArgumentException { MathUtils.checkNotNull(rhs); if (isNaN || rhs.isNaN) { return NaN; } double c = rhs.getReal(); double d = rhs.getImaginary(); if (c == 0.0 && d == 0.0) { return NaN; } if (rhs.isInfinite() && !isInfinite()) { return ZERO; } if (FastMath.abs(c) < FastMath.abs(d)) { double q = c / d; double denominator = c * q + d; return createComplex((real * q + imaginary) / denominator, (imaginary * q - real) / denominator); } else { double q = d / c; double denominator = d * q + c; return createComplex((imaginary * q + real) / denominator, (imaginary - real * q) / denominator); } } /** * Test for the equality of two Complex objects. *

* If both the real and imaginary parts of two Complex numbers are exactly the * same, and neither is Double.NaN, the two Complex objects are * considered to be equal. *

*

* All NaN values are considered to be equal - i.e, if either (or * both) real and imaginary parts of the complex number are equal to * Double.NaN, the complex number is equal to * Complex.NaN. *

* * @param other Object to test for equality to this * @return true if two Complex objects are equal, false if object is null, not * an instance of Complex, or not equal to this Complex instance * */ @Override public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof Complex) { Complex rhs = (Complex) other; if (rhs.isNaN) { return isNaN; } else { return (real == rhs.real) && (imaginary == rhs.imaginary); } } return false; } /** * Get a hashCode for the complex number. *

* All NaN values have the same hash code. *

* * @return a hash code value for this object */ @Override public int hashCode() { if (isNaN) { return 7; } return 37 * (17 * MathUtils.hash(imaginary) + MathUtils.hash(real)); } /** * Access the imaginary part. * * @return the imaginary part */ public double getImaginary() { return imaginary; } /** * Access the real part. * * @return the real part */ public double getReal() { return real; } /** * Returns true if either or both parts of this complex number is NaN; false * otherwise * * @return true if either or both parts of this complex number is NaN; false * otherwise */ public boolean isNaN() { return isNaN; } /** * Returns true if either the real or imaginary part of this complex number * takes an infinite value (either Double.POSITIVE_INFINITY or * Double.NEGATIVE_INFINITY) and neither part is NaN. * * @return true if one or both parts of this complex number are infinite and * neither part is NaN */ public boolean isInfinite() { return isInfinite; } /** * Return the product of this complex number and the given complex number. *

* Implements preliminary checks for NaN and infinity followed by the * definitional formula: * *

	 * 
	 * (a + bi)(c + di) = (ac - bd) + (ad + bc)i
	 * 
	 * 
*

*

* Returns {@link #NaN} if either this or rhs has one or more NaN * parts. *

* Returns {@link #INF} if neither this nor rhs has one or more NaN * parts and if either this or rhs has one or more infinite parts * (same result is returned regardless of the sign of the components). *

*

* Returns finite values in components of the result per the definitional * formula in all remaining cases. *

* * @param rhs the other complex number * @return the complex number product * @throws NullArgumentException if rhs is null */ public Complex multiply(Complex rhs) throws NullArgumentException { MathUtils.checkNotNull(rhs); if (isNaN || rhs.isNaN) { return NaN; } if (Double.isInfinite(real) || Double.isInfinite(imaginary) || Double.isInfinite(rhs.real) || Double.isInfinite(rhs.imaginary)) { // we don't use Complex.isInfinite() to avoid testing for NaN again return INF; } return createComplex(real * rhs.real - imaginary * rhs.imaginary, real * rhs.imaginary + imaginary * rhs.real); } /** * Return the product of this complex number and the given scalar number. *

* Implements preliminary checks for NaN and infinity followed by the * definitional formula: * *

	 * 
	 * c(a + bi) = (ca) + (cb)i
	 * 
	 * 
*

*

* Returns {@link #NaN} if either this or rhs has one or more NaN * parts. *

* Returns {@link #INF} if neither this nor rhs has one or more NaN * parts and if either this or rhs has one or more infinite parts * (same result is returned regardless of the sign of the components). *

*

* Returns finite values in components of the result per the definitional * formula in all remaining cases. *

* * @param rhs the scalar number * @return the complex number product */ public Complex multiply(double rhs) { if (isNaN || Double.isNaN(rhs)) { return NaN; } if (Double.isInfinite(real) || Double.isInfinite(imaginary) || Double.isInfinite(rhs)) { // we don't use Complex.isInfinite() to avoid testing for NaN again return INF; } return createComplex(real * rhs, imaginary * rhs); } /** * Return the additive inverse of this complex number. *

* Returns Complex.NaN if either real or imaginary part of this * Complex number equals Double.NaN. *

* * @return the negation of this complex number */ public Complex negate() { if (isNaN) { return NaN; } return createComplex(-real, -imaginary); } /** * Return the difference between this complex number and the given complex * number. *

* Uses the definitional formula * *

	 * (a + bi) - (c + di) = (a-c) + (b-d)i
	 * 
*

*

* If either this or rhs has a NaN value in either part, * {@link #NaN} is returned; otherwise infinite and NaN values are returned in * the parts of the result according to the rules for {@link java.lang.Double} * arithmetic. *

* * @param rhs the other complex number * @return the complex number difference * @throws NullArgumentException if rhs is null */ public Complex subtract(Complex rhs) throws NullArgumentException { MathUtils.checkNotNull(rhs); if (isNaN || rhs.isNaN) { return NaN; } return createComplex(real - rhs.getReal(), imaginary - rhs.getImaginary()); } /** * Compute the * * inverse cosine of this complex number. *

* Implements the formula: * *

	 *  acos(z) = -i (log(z + i (sqrt(1 - z2))))
	 * 
*

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN or infinite. *

* * @return the inverse cosine of this complex number * @since 1.2 */ public Complex acos() { if (isNaN) { return NaN; } return this.add(this.sqrt1z().multiply(Complex.I)).log().multiply(Complex.I.negate()); } /** * Compute the * * inverse sine of this complex number. *

* Implements the formula: * *

	 *  asin(z) = -i (log(sqrt(1 - z2) + iz)) 
	 * 
*

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN or infinite. *

* * @return the inverse sine of this complex number. * @since 1.2 */ public Complex asin() { if (isNaN) { return NaN; } return sqrt1z().add(this.multiply(Complex.I)).log().multiply(Complex.I.negate()); } /** * Compute the * * inverse tangent of this complex number. *

* Implements the formula: * *

	 *  atan(z) = (i/2) log((i + z)/(i - z)) 
	 * 
*

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN or infinite. *

* * @return the inverse tangent of this complex number * @since 1.2 */ public Complex atan() { if (isNaN) { return NaN; } return this.add(Complex.I).divide(Complex.I.subtract(this)).log() .multiply(Complex.I.divide(createComplex(2.0, 0.0))); } /** * Compute the * cosine of this complex number. *

* Implements the formula: * *

	 *  cos(a + bi) = cos(a)cosh(b) - sin(a)sinh(b)i
	 * 
* * where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * cos(1 ± INFINITY i) = 1 ∓ INFINITY i
	 * cos(±INFINITY + i) = NaN + NaN i
	 * cos(±INFINITY ± INFINITY i) = NaN + NaN i
	 * 
*

* * @return the cosine of this complex number * @since 1.2 */ public Complex cos() { if (isNaN) { return NaN; } return createComplex(FastMath.cos(real) * MathUtils.cosh(imaginary), -FastMath.sin(real) * MathUtils.sinh(imaginary)); } /** * Compute the * * hyperbolic cosine of this complex number. *

* Implements the formula: * *

	 *  cosh(a + bi) = cosh(a)cos(b) + sinh(a)sin(b)i
	 * 
* * where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * cosh(1 ± INFINITY i) = NaN + NaN i
	 * cosh(±INFINITY + i) = INFINITY ± INFINITY i
	 * cosh(±INFINITY ± INFINITY i) = NaN + NaN i
	 * 
*

* * @return the hyperbolic cosine of this complex number. * @since 1.2 */ public Complex cosh() { if (isNaN) { return NaN; } return createComplex(MathUtils.cosh(real) * FastMath.cos(imaginary), MathUtils.sinh(real) * FastMath.sin(imaginary)); } /** * Compute the * exponential function of this complex number. *

* Implements the formula: * *

	 *  exp(a + bi) = exp(a)cos(b) + exp(a)sin(b)i
	 * 
* * where the (real) functions on the right-hand side are * {@link java.lang.Math#exp}, {@link java.lang.Math#cos}, and * {@link java.lang.Math#sin}. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * exp(1 ± INFINITY i) = NaN + NaN i
	 * exp(INFINITY + i) = INFINITY + INFINITY i
	 * exp(-INFINITY + i) = 0 + 0i
	 * exp(±INFINITY ± INFINITY i) = NaN + NaN i
	 * 
*

* * @return ethis * @since 1.2 */ public Complex exp() { if (isNaN) { return NaN; } double expReal = FastMath.exp(real); return createComplex(expReal * FastMath.cos(imaginary), expReal * FastMath.sin(imaginary)); } /** * Compute the * * natural logarithm of this complex number. *

* Implements the formula: * *

	 *  log(a + bi) = ln(|a + bi|) + arg(a + bi)i
	 * 
* * where ln on the right hand side is {@link java.lang.Math#log}, * |a + bi| is the modulus, {@link Complex#abs}, and * arg(a + bi) = {@link java.lang.Math#atan2}(b, a) *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite (or critical) values in real or imaginary parts of the input may * result in infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * log(1 ± INFINITY i) = INFINITY ± (π/2)i
	 * log(INFINITY + i) = INFINITY + 0i
	 * log(-INFINITY + i) = INFINITY + πi
	 * log(INFINITY ± INFINITY i) = INFINITY ± (π/4)i
	 * log(-INFINITY ± INFINITY i) = INFINITY ± (3π/4)i
	 * log(0 + 0i) = -INFINITY + 0i
	 * 
	 * 
*

* * @return ln of this complex number. * @since 1.2 */ public Complex log() { if (isNaN) { return NaN; } return createComplex(FastMath.log(abs()), FastMath.atan2(imaginary, real)); } /** * Returns of value of this complex number raised to the power of * x. *

* Implements the formula: * *

	 *  yx = exp(x·log(y))
	 * 
* * where exp and log are {@link #exp} and * {@link #log}, respectively. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN or infinite, or if y equals * {@link Complex#ZERO}. *

* * @param x the exponent. * @return thisx * @throws NullArgumentException if x is null * @since 1.2 */ public Complex pow(Complex x) throws NullArgumentException { MathUtils.checkNotNull(x); return this.log().multiply(x).exp(); } /** * Compute the * sine of this complex number. *

* Implements the formula: * *

	 *  sin(a + bi) = sin(a)cosh(b) - cos(a)sinh(b)i
	 * 
* * where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * sin(1 ± INFINITY i) = 1 ± INFINITY i
	 * sin(±INFINITY + i) = NaN + NaN i
	 * sin(±INFINITY ± INFINITY i) = NaN + NaN i
	 * 
*

* * @return the sine of this complex number. * @since 1.2 */ public Complex sin() { if (isNaN) { return NaN; } return createComplex(FastMath.sin(real) * MathUtils.cosh(imaginary), FastMath.cos(real) * MathUtils.sinh(imaginary)); } /** * Compute the * * hyperbolic sine of this complex number. *

* Implements the formula: * *

	 *  sinh(a + bi) = sinh(a)cos(b)) + cosh(a)sin(b)i
	 * 
* * where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * sinh(1 ± INFINITY i) = NaN + NaN i
	 * sinh(±INFINITY + i) = ± INFINITY + INFINITY i
	 * sinh(±INFINITY ± INFINITY i) = NaN + NaN i
	 * 
*

* * @return the hyperbolic sine of this complex number * @since 1.2 */ public Complex sinh() { if (isNaN) { return NaN; } return createComplex(MathUtils.sinh(real) * FastMath.cos(imaginary), MathUtils.cosh(real) * FastMath.sin(imaginary)); } /** * Compute the * square * root of this complex number. *

* Implements the following algorithm to compute sqrt(a + bi): *

    *
  1. Let t = sqrt((|a| + |a + bi|) / 2)
  2. *
  3. * *
    	 * if  a ≥ 0 return t + (b/2t)i
    	 *  else return |b|/2t + sign(b)t i 
    	 * 
    * *
  4. *
* where *
    *
  • |a| = {@link Math#abs}(a)
  • *
  • |a + bi| = {@link Complex#abs}(a + bi)
  • *
  • sign(b) = {@link MathUtils#indicator}(b) *
*

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * sqrt(1 ± INFINITY i) = INFINITY + NaN i
	 * sqrt(INFINITY + i) = INFINITY + 0i
	 * sqrt(-INFINITY + i) = 0 + INFINITY i
	 * sqrt(INFINITY ± INFINITY i) = INFINITY + NaN i
	 * sqrt(-INFINITY ± INFINITY i) = NaN ± INFINITY i
	 * 
	 * 
*

* * @return the square root of this complex number * @since 1.2 */ public Complex sqrt() { if (isNaN) { return NaN; } if (real == 0.0 && imaginary == 0.0) { return createComplex(0.0, 0.0); } double t = FastMath.sqrt((FastMath.abs(real) + abs()) / 2.0); if (real >= 0.0) { return createComplex(t, imaginary / (2.0 * t)); } else { return createComplex(FastMath.abs(imaginary) / (2.0 * t), MathUtils.indicator(imaginary) * t); } } /** * Compute the * square * root of 1 - this2 for this complex number. *

* Computes the result directly as * sqrt(Complex.ONE.subtract(z.multiply(z))). *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. *

* * @return the square root of 1 - this2 * @since 1.2 */ public Complex sqrt1z() { return createComplex(1.0, 0.0).subtract(this.multiply(this)).sqrt(); } /** * Compute the * * tangent of this complex number. *

* Implements the formula: * *

	 * tan(a + bi) = sin(2a)/(cos(2a)+cosh(2b)) + [sinh(2b)/(cos(2a)+cosh(2b))]i
	 * 
* * where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite (or critical) values in real or imaginary parts of the input may * result in infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * tan(1 ± INFINITY i) = 0 + NaN i
	 * tan(±INFINITY + i) = NaN + NaN i
	 * tan(±INFINITY ± INFINITY i) = NaN + NaN i
	 * tan(±π/2 + 0 i) = ±INFINITY + NaN i
	 * 
*

* * @return the tangent of this complex number * @since 1.2 */ public Complex tan() { if (isNaN) { return NaN; } double real2 = 2.0 * real; double imaginary2 = 2.0 * imaginary; double d = FastMath.cos(real2) + MathUtils.cosh(imaginary2); return createComplex(FastMath.sin(real2) / d, MathUtils.sinh(imaginary2) / d); } /** * Compute the * * hyperbolic tangent of this complex number. *

* Implements the formula: * *

	 * tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
	 * 
* * where the (real) functions on the right-hand side are * {@link java.lang.Math#sin}, {@link java.lang.Math#cos}, * {@link MathUtils#cosh} and {@link MathUtils#sinh}. *

*

* Returns {@link Complex#NaN} if either real or imaginary part of the input * argument is NaN. *

*

* Infinite values in real or imaginary parts of the input may result in * infinite or NaN values returned in parts of the result. * *

	 * Examples:
	 * 
	 * tanh(1 ± INFINITY i) = NaN + NaN i
	 * tanh(±INFINITY + i) = NaN + 0 i
	 * tanh(±INFINITY ± INFINITY i) = NaN + NaN i
	 * tanh(0 + (π/2)i) = NaN + INFINITY i
	 * 
*

* * @return the hyperbolic tangent of this complex number * @since 1.2 */ public Complex tanh() { if (isNaN) { return NaN; } double real2 = 2.0 * real; double imaginary2 = 2.0 * imaginary; double d = MathUtils.cosh(real2) + FastMath.cos(imaginary2); return createComplex(MathUtils.sinh(real2) / d, FastMath.sin(imaginary2) / d); } /** *

* Compute the argument of this complex number. *

*

* The argument is the angle phi between the positive real axis and the point * representing this number in the complex plane. The value returned is between * -PI (not inclusive) and PI (inclusive), with negative values returned for * numbers with negative imaginary parts. *

*

* If either real or imaginary part (or both) is NaN, NaN is returned. Infinite * parts are handled as java.Math.atan2 handles them, essentially treating * finite parts as zero in the presence of an infinite coordinate and returning * a multiple of pi/4 depending on the signs of the infinite parts. See the * javadoc for java.Math.atan2 for full details. *

* * @return the argument of this complex number */ public double getArgument() { return FastMath.atan2(getImaginary(), getReal()); } /** *

* Computes the n-th roots of this complex number. *

*

* The nth roots are defined by the formula: * *

	 *  zk = abs 1/n (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
	 * 
* * for k=0, 1, ..., n-1, where abs and * phi are respectively the {@link #abs() modulus} and * {@link #getArgument() argument} of this complex number. *

*

* If one or both parts of this complex number is NaN, a list with just one * element, {@link #NaN} is returned. *

*

* if neither part is NaN, but at least one part is infinite, the result is a * one-element list containing {@link #INF}. *

* * @param n degree of root * @return List all nth roots of this complex number * @throws IllegalArgumentException if parameter n is less than or equal to 0 * @since 2.0 */ public List nthRoot(int n) throws IllegalArgumentException { if (n <= 0) { throw MathRuntimeException .createIllegalArgumentException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N, n); } List result = new ArrayList(); if (isNaN) { result.add(NaN); return result; } if (isInfinite()) { result.add(INF); return result; } // nth root of abs -- faster / more accurate to use a solver here? final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n); // Compute nth roots of complex number with k = 0, 1, ... n-1 final double nthPhi = getArgument() / n; final double slice = 2 * FastMath.PI / n; double innerPart = nthPhi; for (int k = 0; k < n; k++) { // inner part final double realPart = nthRootOfAbs * FastMath.cos(innerPart); final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart); result.add(createComplex(realPart, imaginaryPart)); innerPart += slice; } return result; } /** * Create a complex number given the real and imaginary parts. * * @param realPart the real part * @param imaginaryPart the imaginary part * @return a new complex number instance * @since 1.2 */ protected Complex createComplex(double realPart, double imaginaryPart) { return new Complex(realPart, imaginaryPart); } /** *

* Resolve the transient fields in a deserialized Complex Object. *

*

* Subclasses will need to override {@link #createComplex} to deserialize * properly *

* * @return A Complex instance with all fields resolved. * @since 2.0 */ protected final Object readResolve() { return createComplex(real, imaginary); } /** {@inheritDoc} */ public ComplexField getField() { return ComplexField.getInstance(); } /** {@inheritDoc} */ @Override public String toString() { return "(" + real + ", " + imaginary + ")"; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy