All Downloads are FREE. Search and download functionalities are using the official Maven repository.

casesDj4.math_84.MultiDirectional_s Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.optimization.direct;

import java.util.Comparator;

import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.optimization.OptimizationException;
import org.apache.commons.math.optimization.RealConvergenceChecker;
import org.apache.commons.math.optimization.RealPointValuePair;

/** 
 * This class implements the multi-directional direct search method.
 *
 * @version $Revision$ $Date$
 * @see NelderMead
 * @since 1.2
 */
public class MultiDirectional extends DirectSearchOptimizer {

    /** Expansion coefficient. */
    private final double khi;

    /** Contraction coefficient. */
    private final double gamma;

    /** Build a multi-directional optimizer with default coefficients.
     * 

The default values are 2.0 for khi and 0.5 for gamma.

*/ public MultiDirectional() { this.khi = 2.0; this.gamma = 0.5; } /** Build a multi-directional optimizer with specified coefficients. * @param khi expansion coefficient * @param gamma contraction coefficient */ public MultiDirectional(final double khi, final double gamma) { this.khi = khi; this.gamma = gamma; } /** {@inheritDoc} */ @Override protected void iterateSimplex(final Comparator comparator) throws FunctionEvaluationException, OptimizationException, IllegalArgumentException { while (true) { incrementIterationsCounter(); // save the original vertex final RealPointValuePair[] original = simplex; final RealPointValuePair best = original[0]; // perform a reflection step final RealPointValuePair reflected = evaluateNewSimplex(original, 1.0, comparator); if (comparator.compare(reflected, best) < 0) { // compute the expanded simplex final RealPointValuePair[] reflectedSimplex = simplex; final RealPointValuePair expanded = evaluateNewSimplex(original, khi, comparator); if (comparator.compare(reflected, expanded) <= 0) { // accept the reflected simplex simplex = reflectedSimplex; } return; } // compute the contracted simplex final RealPointValuePair contracted = evaluateNewSimplex(original, gamma, comparator); if (comparator.compare(contracted, best) < 0) { // accept the contracted simplex // check convergence return; } } } /** Compute and evaluate a new simplex. * @param original original simplex (to be preserved) * @param coeff linear coefficient * @param comparator comparator to use to sort simplex vertices from best to poorest * @return best point in the transformed simplex * @exception FunctionEvaluationException if the function cannot be evaluated at * some point * @exception OptimizationException if the maximal number of evaluations is exceeded */ private RealPointValuePair evaluateNewSimplex(final RealPointValuePair[] original, final double coeff, final Comparator comparator) throws FunctionEvaluationException, OptimizationException { final double[] xSmallest = original[0].getPointRef(); final int n = xSmallest.length; // create the linearly transformed simplex simplex = new RealPointValuePair[n + 1]; simplex[0] = original[0]; for (int i = 1; i <= n; ++i) { final double[] xOriginal = original[i].getPointRef(); final double[] xTransformed = new double[n]; for (int j = 0; j < n; ++j) { xTransformed[j] = xSmallest[j] + coeff * (xSmallest[j] - xOriginal[j]); } simplex[i] = new RealPointValuePair(xTransformed, Double.NaN, false); } // evaluate it evaluateSimplex(comparator); return simplex[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy