casesDj4.math_92.MathUtils_t Maven / Gradle / Ivy
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math.util; import java.math.BigDecimal; import java.util.Arrays; /** * Some useful additions to the built-in functions in {@link Math}. * @version $Revision$ $Date$ */ public final class MathUtils { /** Smallest positive number such that 1 - EPSILON is not numerically equal to 1. */ public static final double EPSILON = 0x1.0p-53; /** Safe minimum, such that 1 / SAFE_MIN does not overflow. *
is 20. If the computed value exceedsIn IEEE 754 arithmetic, this is also the smallest normalized * number 2-1022.
*/ public static final double SAFE_MIN = 0x1.0p-1022; /** -1.0 cast as a byte. */ private static final byte NB = (byte)-1; /** -1.0 cast as a short. */ private static final short NS = (short)-1; /** 1.0 cast as a byte. */ private static final byte PB = (byte)1; /** 1.0 cast as a short. */ private static final short PS = (short)1; /** 0.0 cast as a byte. */ private static final byte ZB = (byte)0; /** 0.0 cast as a short. */ private static final short ZS = (short)0; /** 2 π. */ private static final double TWO_PI = 2 * Math.PI; /** * Private Constructor */ private MathUtils() { super(); } /** * Add two integers, checking for overflow. * * @param x an addend * @param y an addend * @return the sumx+y
* @throws ArithmeticException if the result can not be represented as an * int * @since 1.1 */ public static int addAndCheck(int x, int y) { long s = (long)x + (long)y; if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { throw new ArithmeticException("overflow: add"); } return (int)s; } /** * Add two long integers, checking for overflow. * * @param a an addend * @param b an addend * @return the suma+b
* @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ public static long addAndCheck(long a, long b) { return addAndCheck(a, b, "overflow: add"); } /** * Add two long integers, checking for overflow. * * @param a an addend * @param b an addend * @param msg the message to use for any thrown exception. * @return the suma+b
* @throws ArithmeticException if the result can not be represented as an * long * @since 1.2 */ private static long addAndCheck(long a, long b, String msg) { long ret; if (a > b) { // use symmetry to reduce boundary cases ret = addAndCheck(b, a, msg); } else { // assert a <= b if (a < 0) { if (b < 0) { // check for negative overflow if (Long.MIN_VALUE - b <= a) { ret = a + b; } else { throw new ArithmeticException(msg); } } else { // opposite sign addition is always safe ret = a + b; } } else { // assert a >= 0 // assert b >= 0 // check for positive overflow if (a <= Long.MAX_VALUE - b) { ret = a + b; } else { throw new ArithmeticException(msg); } } } return ret; } /** * Returns an exact representation of the Binomial * Coefficient, "n choose k
", the number of *k
-element subsets that can be selected from an *n
-element set. ** Preconditions: *
*
* * @param n the size of the set * @param k the size of the subsets to be counted * @return- *
0 <= k <= n
(otherwise *IllegalArgumentException
is thrown)- The result is small enough to fit into a
*long
. The * largest value ofn
for which all coefficients are *< Long.MAX_VALUE
is 66. If the computed value exceeds *Long.MAX_VALUE
anArithMeticException
is * thrown.n choose k
* @throws IllegalArgumentException if preconditions are not met. * @throws ArithmeticException if the result is too large to be represented * by a long integer. */ public static long binomialCoefficient(final int n, final int k) { if (n < k) { throw new IllegalArgumentException( "must have n >= k for binomial coefficient (n,k)"); } if (n < 0) { throw new IllegalArgumentException( "must have n >= 0 for binomial coefficient (n,k)"); } if ((n == k) || (k == 0)) { return 1; } if ((k == 1) || (k == n - 1)) { return n; } // Use symmetry for large k if (k > n / 2) return binomialCoefficient(n, n - k); // We use the formula // (n choose k) = n! / (n-k)! / k! // (n choose k) == ((n-k+1)*...*n) / (1*...*k) // which could be written // (n choose k) == (n-1 choose k-1) * n / k long result = 1; if (n <= 61) { // For n <= 61, the naive implementation cannot overflow. for (int j = 1, i = n - k + 1; j <= k; i++, j++) { result = result * i / j; } } else if (n <= 66) { // For n > 61 but n <= 66, the result cannot overflow, // but we must take care not to overflow intermediate values. for (int j = 1, i = n - k + 1; j <= k; i++, j++) { // We know that (result * i) is divisible by j, // but (result * i) may overflow, so we split j: // Filter out the gcd, d, so j/d and i/d are integer. // result is divisible by (j/d) because (j/d) // is relative prime to (i/d) and is a divisor of // result * (i/d). long d = gcd(i, j); result = (result / (j / d)) * (i / d); } } else { // For n > 66, a result overflow might occur, so we check // the multiplication, taking care to not overflow // unnecessary. for (int j = 1, i = n - k + 1; j <= k; i++, j++) { long d = gcd(i, j); result = mulAndCheck((result / (j / d)), (i / d)); } } return result; } /** * Returns adouble
representation of the Binomial * Coefficient, "n choose k
", the number of *k
-element subsets that can be selected from an *n
-element set. ** Preconditions: *
*
* * @param n the size of the set * @param k the size of the subsets to be counted * @return- *
0 <= k <= n
(otherwise *IllegalArgumentException
is thrown)- The result is small enough to fit into a
*double
. The * largest value ofn
for which all coefficients are < * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE, * Double.POSITIVE_INFINITY is returnedn choose k
* @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientDouble(final int n, final int k) { if (n < k) { throw new IllegalArgumentException( "must have n >= k for binomial coefficient (n,k)"); } if (n < 0) { throw new IllegalArgumentException( "must have n >= 0 for binomial coefficient (n,k)"); } if ((n == k) || (k == 0)) { return 1d; } if ((k == 1) || (k == n - 1)) { return n; } if (k > n/2) { return binomialCoefficientDouble(n, n - k); } if (n < 67) { return binomialCoefficient(n,k); } double result = 1d; for (int i = 1; i <= k; i++) { result *= (double)(n - k + i) / (double)i; } return Math.floor(result + 0.5); } /** * Returns the naturallog
of the Binomial * Coefficient, "n choose k
", the number of *k
-element subsets that can be selected from an *n
-element set. ** Preconditions: *
*
* * @param n the size of the set * @param k the size of the subsets to be counted * @return- *
0 <= k <= n
(otherwise *IllegalArgumentException
is thrown)n choose k
* @throws IllegalArgumentException if preconditions are not met. */ public static double binomialCoefficientLog(final int n, final int k) { if (n < k) { throw new IllegalArgumentException( "must have n >= k for binomial coefficient (n,k)"); } if (n < 0) { throw new IllegalArgumentException( "must have n >= 0 for binomial coefficient (n,k)"); } if ((n == k) || (k == 0)) { return 0; } if ((k == 1) || (k == n - 1)) { return Math.log((double) n); } /* * For values small enough to do exact integer computation, * return the log of the exact value */ if (n < 67) { return Math.log(binomialCoefficient(n,k)); } /* * Return the log of binomialCoefficientDouble for values that will not * overflow binomialCoefficientDouble */ if (n < 1030) { return Math.log(binomialCoefficientDouble(n, k)); } /* * Sum logs for values that could overflow */ double logSum = 0; // n!/k! for (int i = k + 1; i <= n; i++) { logSum += Math.log((double)i); } // divide by (n-k)! for (int i = 2; i <= n - k; i++) { logSum -= Math.log((double)i); } return logSum; } /** * Returns the * hyperbolic cosine of x. * * @param x double value for which to find the hyperbolic cosine * @return hyperbolic cosine of x */ public static double cosh(double x) { return (Math.exp(x) + Math.exp(-x)) / 2.0; } /** * Returns true iff both arguments are NaN or neither is NaN and they are * equal * * @param x first value * @param y second value * @return true if the values are equal or both are NaN */ public static boolean equals(double x, double y) { return ((Double.isNaN(x) && Double.isNaN(y)) || x == y); } /** * Returns true iff both arguments are null or have same dimensions * and all their elements are {@link #equals(double,double) equals} * * @param x first array * @param y second array * @return true if the values are both null or have same dimension * and equal elements * @since 1.2 */ public static boolean equals(double[] x, double[] y) { if ((x == null) || (y == null)) { return !((x == null) ^ (y == null)); } if (x.length != y.length) { return false; } for (int i = 0; i < x.length; ++i) { if (!equals(x[i], y[i])) { return false; } } return true; } /** All long-representable factorials */ private static final long[] factorials = new long[] {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600, 6227020800l, 87178291200l, 1307674368000l, 20922789888000l, 355687428096000l, 6402373705728000l, 121645100408832000l, 2432902008176640000l}; /** * Returns n!. Shorthand forn
Factorial, the * product of the numbers1,...,n
. ** Preconditions: *
*
- *
n >= 0
(otherwise *IllegalArgumentException
is thrown)- The result is small enough to fit into a
long
. The * largest value ofn
for whichn!
< * Long.MAX_VALUELong.MAX_VALUE
* anArithMeticException
is thrown. * * * * @param n argument * @returnn!
* @throws ArithmeticException if the result is too large to be represented * by a long integer. * @throws IllegalArgumentException if n < 0 */ public static long factorial(final int n) { if (n < 0) { throw new IllegalArgumentException("must have n >= 0 for n!"); } if (n > 20) { throw new ArithmeticException( "factorial value is too large to fit in a long"); } return factorials[n]; } /** * Returns n!. Shorthand forn
Factorial, the * product of the numbers1,...,n
as adouble
. ** Preconditions: *
-
*
-
n >= 0
(otherwise *IllegalArgumentException
is thrown)
* - The result is small enough to fit into a
double
. The * largest value ofn
for whichn!
< * Double.MAX_VALUE is 170. If the computed value exceeds * Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned
*
n!
* @throws IllegalArgumentException if n < 0
*/
public static double factorialDouble(final int n) {
if (n < 0) {
throw new IllegalArgumentException("must have n >= 0 for n!");
}
if (n < 21) {
return factorial(n);
}
return Math.floor(Math.exp(factorialLog(n)) + 0.5);
}
/**
* Returns the natural logarithm of n!.
* * Preconditions: *
-
*
-
n >= 0
(otherwise *IllegalArgumentException
is thrown)
*
n!
* @throws IllegalArgumentException if preconditions are not met.
*/
public static double factorialLog(final int n) {
if (n < 0) {
throw new IllegalArgumentException("must have n > 0 for n!");
}
if (n < 21) {
return Math.log(factorial(n));
}
double logSum = 0;
for (int i = 2; i <= n; i++) {
logSum += Math.log((double)i);
}
return logSum;
}
/**
* * Gets the greatest common divisor of the absolute value of two numbers, * using the "binary gcd" method which avoids division and modulo * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef * Stein (1961). *
* * @param u a non-zero number * @param v a non-zero number * @return the greatest common divisor, never zero * @since 1.1 */ public static int gcd(int u, int v) { if ((u == 0) || (v == 0)) { return (Math.abs(u) + Math.abs(v)); } // keep u and v negative, as negative integers range down to // -2^31, while positive numbers can only be as large as 2^31-1 // (i.e. we can't necessarily negate a negative number without // overflow) /* assert u!=0 && v!=0; */ if (u > 0) { u = -u; } // make u negative if (v > 0) { v = -v; } // make v negative // B1. [Find power of 2] int k = 0; while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are // both even... u /= 2; v /= 2; k++; // cast out twos. } if (k == 31) { throw new ArithmeticException("overflow: gcd is 2^31"); } // B2. Initialize: u and v have been divided by 2^k and at least // one is odd. int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */; // t negative: u was odd, v may be even (t replaces v) // t positive: u was even, v is odd (t replaces u) do { /* assert u<0 && v<0; */ // B4/B3: cast out twos from t. while ((t & 1) == 0) { // while t is even.. t /= 2; // cast out twos } // B5 [reset max(u,v)] if (t > 0) { u = -t; } else { v = t; } // B6/B3. at this point both u and v should be odd. t = (v - u) / 2; // |u| larger: t positive (replace u) // |v| larger: t negative (replace v) } while (t != 0); return -u * (1 << k); // gcd is u*2^k } /** * Returns an integer hash code representing the given double value. * * @param value the value to be hashed * @return the hash code */ public static int hash(double value) { return new Double(value).hashCode(); } /** * Returns an integer hash code representing the given double array. * * @param value the value to be hashed (may be null) * @return the hash code * @since 1.2 */ public static int hash(double[] value) { return Arrays.hashCode(value); } /** * For a byte value x, this method returns (byte)(+1) if x >= 0 and * (byte)(-1) if x < 0. * * @param x the value, a byte * @return (byte)(+1) or (byte)(-1), depending on the sign of x */ public static byte indicator(final byte x) { return (x >= ZB) ? PB : NB; } /** * For a double precision value x, this method returns +1.0 if x >= 0 and * -1.0 if x < 0. ReturnsNaN
if x
is
* NaN
.
*
* @param x the value, a double
* @return +1.0 or -1.0, depending on the sign of x
*/
public static double indicator(final double x) {
if (Double.isNaN(x)) {
return Double.NaN;
}
return (x >= 0.0) ? 1.0 : -1.0;
}
/**
* For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x <
* 0. Returns NaN
if x
is NaN
.
*
* @param x the value, a float
* @return +1.0F or -1.0F, depending on the sign of x
*/
public static float indicator(final float x) {
if (Float.isNaN(x)) {
return Float.NaN;
}
return (x >= 0.0F) ? 1.0F : -1.0F;
}
/**
* For an int value x, this method returns +1 if x >= 0 and -1 if x < 0.
*
* @param x the value, an int
* @return +1 or -1, depending on the sign of x
*/
public static int indicator(final int x) {
return (x >= 0) ? 1 : -1;
}
/**
* For a long value x, this method returns +1L if x >= 0 and -1L if x < 0.
*
* @param x the value, a long
* @return +1L or -1L, depending on the sign of x
*/
public static long indicator(final long x) {
return (x >= 0L) ? 1L : -1L;
}
/**
* For a short value x, this method returns (short)(+1) if x >= 0 and
* (short)(-1) if x < 0.
*
* @param x the value, a short
* @return (short)(+1) or (short)(-1), depending on the sign of x
*/
public static short indicator(final short x) {
return (x >= ZS) ? PS : NS;
}
/**
* Returns the least common multiple between two integer values.
*
* @param a the first integer value.
* @param b the second integer value.
* @return the least common multiple between a and b.
* @throws ArithmeticException if the lcm is too large to store as an int
* @since 1.1
*/
public static int lcm(int a, int b) {
return Math.abs(mulAndCheck(a / gcd(a, b), b));
}
/**
* Returns the
* logarithm
* for base b
of x
.
*
Returns NaN
if either argument is negative. If
*
base
is 0 and x
is positive, 0 is returned.
* If base
is positive and x
is 0,
* Double.NEGATIVE_INFINITY
is returned. If both arguments
* are 0, the result is NaN
.
x*y
* @throws ArithmeticException if the result can not be represented as an
* int
* @since 1.1
*/
public static int mulAndCheck(int x, int y) {
long m = ((long)x) * ((long)y);
if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: mul");
}
return (int)m;
}
/**
* Multiply two long integers, checking for overflow.
*
* @param a first value
* @param b second value
* @return the product a * b
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
public static long mulAndCheck(long a, long b) {
long ret;
String msg = "overflow: multiply";
if (a > b) {
// use symmetry to reduce boundary cases
ret = mulAndCheck(b, a);
} else {
if (a < 0) {
if (b < 0) {
// check for positive overflow with negative a, negative b
if (a >= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else if (b > 0) {
// check for negative overflow with negative a, positive b
if (Long.MIN_VALUE / b <= a) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else {
// assert b == 0
ret = 0;
}
} else if (a > 0) {
// assert a > 0
// assert b > 0
// check for positive overflow with positive a, positive b
if (a <= Long.MAX_VALUE / b) {
ret = a * b;
} else {
throw new ArithmeticException(msg);
}
} else {
// assert a == 0
ret = 0;
}
}
return ret;
}
/**
* Get the next machine representable number after a number, moving
* in the direction of another number.
*
* If direction
is greater than or equal tod
,
* the smallest machine representable number strictly greater than
* d
is returned; otherwise the largest representable number
* strictly less than d
is returned.
* If d
is NaN or Infinite, it is returned unchanged.
If d
is 0 or NaN or Infinite, it is returned unchanged.
This method has three main uses:
*-
*
- normalize an angle between 0 and 2π:
*a = MathUtils.normalizeAngle(a, Math.PI);
* - normalize an angle between -π and +π
*a = MathUtils.normalizeAngle(a, 0.0);
* - compute the angle between two defining angular positions:
*angle = MathUtils.normalizeAngle(end, start) - start;
*
Note that due to numerical accuracy and since π cannot be represented * exactly, the result interval is closed, it cannot be half-closed * as would be more satisfactory in a purely mathematical view.
* @param a angle to normalize * @param center center of the desired 2π interval for the result * @return a-2kπ with integer k and center-π <= a-2kπ <= center+π * @since 1.2 */ public static double normalizeAngle(double a, double center) { return a - TWO_PI * Math.floor((a + Math.PI - center) / TWO_PI); } /** * Round the given value to the specified number of decimal places. The * value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 */ public static double round(double x, int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Round the given value to the specified number of decimal places. The * value is rounded using the given method which is any method defined in * {@link BigDecimal}. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ public static double round(double x, int scale, int roundingMethod) { try { return (new BigDecimal (Double.toString(x)) .setScale(scale, roundingMethod)) .doubleValue(); } catch (NumberFormatException ex) { if (Double.isInfinite(x)) { return x; } else { return Double.NaN; } } } /** * Round the given value to the specified number of decimal places. The * value is rounding using the {@link BigDecimal#ROUND_HALF_UP} method. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @return the rounded value. * @since 1.1 */ public static float round(float x, int scale) { return round(x, scale, BigDecimal.ROUND_HALF_UP); } /** * Round the given value to the specified number of decimal places. The * value is rounded using the given method which is any method defined in * {@link BigDecimal}. * * @param x the value to round. * @param scale the number of digits to the right of the decimal point. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ public static float round(float x, int scale, int roundingMethod) { float sign = indicator(x); float factor = (float)Math.pow(10.0f, scale) * sign; return (float)roundUnscaled(x * factor, sign, roundingMethod) / factor; } /** * Round the given non-negative, value to the "nearest" integer. Nearest is * determined by the rounding method specified. Rounding methods are defined * in {@link BigDecimal}. * * @param unscaled the value to round. * @param sign the sign of the original, scaled value. * @param roundingMethod the rounding method as defined in * {@link BigDecimal}. * @return the rounded value. * @since 1.1 */ private static double roundUnscaled(double unscaled, double sign, int roundingMethod) { switch (roundingMethod) { case BigDecimal.ROUND_CEILING : if (sign == -1) { unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } else { unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); } break; case BigDecimal.ROUND_DOWN : unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); break; case BigDecimal.ROUND_FLOOR : if (sign == -1) { unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); } else { unscaled = Math.floor(nextAfter(unscaled, Double.NEGATIVE_INFINITY)); } break; case BigDecimal.ROUND_HALF_DOWN : { unscaled = nextAfter(unscaled, Double.NEGATIVE_INFINITY); double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) { unscaled = Math.ceil(unscaled); } else { unscaled = Math.floor(unscaled); } break; } case BigDecimal.ROUND_HALF_EVEN : { double fraction = unscaled - Math.floor(unscaled); if (fraction > 0.5) { unscaled = Math.ceil(unscaled); } else if (fraction < 0.5) { unscaled = Math.floor(unscaled); } else { // The following equality test is intentional and needed for rounding purposes if (Math.floor(unscaled) / 2.0 == Math.floor(Math .floor(unscaled) / 2.0)) { // even unscaled = Math.floor(unscaled); } else { // odd unscaled = Math.ceil(unscaled); } } break; } case BigDecimal.ROUND_HALF_UP : { unscaled = nextAfter(unscaled, Double.POSITIVE_INFINITY); double fraction = unscaled - Math.floor(unscaled); if (fraction >= 0.5) { unscaled = Math.ceil(unscaled); } else { unscaled = Math.floor(unscaled); } break; } case BigDecimal.ROUND_UNNECESSARY : if (unscaled != Math.floor(unscaled)) { throw new ArithmeticException("Inexact result from rounding"); } break; case BigDecimal.ROUND_UP : unscaled = Math.ceil(nextAfter(unscaled, Double.POSITIVE_INFINITY)); break; default : throw new IllegalArgumentException("Invalid rounding method."); } return unscaled; } /** * Returns the sign * for byte valuex
.
* * For a byte value x, this method returns (byte)(+1) if x > 0, (byte)(0) if * x = 0, and (byte)(-1) if x < 0.
* * @param x the value, a byte * @return (byte)(+1), (byte)(0), or (byte)(-1), depending on the sign of x */ public static byte sign(final byte x) { return (x == ZB) ? ZB : (x > ZB) ? PB : NB; } /** * Returns the sign * for double precisionx
.
*
* For a double value x
, this method returns
* +1.0
if x > 0
, 0.0
if
* x = 0.0
, and -1.0
if x < 0
.
* Returns NaN
if x
is NaN
.
x
.
*
* For a float value x, this method returns +1.0F if x > 0, 0.0F if x =
* 0.0F, and -1.0F if x < 0. Returns NaN
if x
* is NaN
.
x
.
* * For an int value x, this method returns +1 if x > 0, 0 if x = 0, and -1 * if x < 0.
* * @param x the value, an int * @return +1, 0, or -1, depending on the sign of x */ public static int sign(final int x) { return (x == 0) ? 0 : (x > 0) ? 1 : -1; } /** * Returns the sign * for long valuex
.
* * For a long value x, this method returns +1L if x > 0, 0L if x = 0, and * -1L if x < 0.
* * @param x the value, a long * @return +1L, 0L, or -1L, depending on the sign of x */ public static long sign(final long x) { return (x == 0L) ? 0L : (x > 0L) ? 1L : -1L; } /** * Returns the sign * for short valuex
.
* * For a short value x, this method returns (short)(+1) if x > 0, (short)(0) * if x = 0, and (short)(-1) if x < 0.
* * @param x the value, a short * @return (short)(+1), (short)(0), or (short)(-1), depending on the sign of * x */ public static short sign(final short x) { return (x == ZS) ? ZS : (x > ZS) ? PS : NS; } /** * Returns the * hyperbolic sine of x. * * @param x double value for which to find the hyperbolic sine * @return hyperbolic sine of x */ public static double sinh(double x) { return (Math.exp(x) - Math.exp(-x)) / 2.0; } /** * Subtract two integers, checking for overflow. * * @param x the minuend * @param y the subtrahend * @return the differencex-y
* @throws ArithmeticException if the result can not be represented as an
* int
* @since 1.1
*/
public static int subAndCheck(int x, int y) {
long s = (long)x - (long)y;
if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) {
throw new ArithmeticException("overflow: subtract");
}
return (int)s;
}
/**
* Subtract two long integers, checking for overflow.
*
* @param a first value
* @param b second value
* @return the difference a-b
* @throws ArithmeticException if the result can not be represented as an
* long
* @since 1.2
*/
public static long subAndCheck(long a, long b) {
long ret;
String msg = "overflow: subtract";
if (b == Long.MIN_VALUE) {
if (a < 0) {
ret = a - b;
} else {
throw new ArithmeticException(msg);
}
} else {
// use additive inverse
ret = addAndCheck(a, -b, msg);
}
return ret;
}
}