All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.cliffc.high_scale_lib.NonBlockingSetInt Maven / Gradle / Ivy

There is a newer version: 1.1.4
Show newest version
/*
 * Written by Cliff Click and released to the public domain, as explained at
 * http://creativecommons.org/licenses/publicdomain
 */

package org.cliffc.high_scale_lib;
import java.io.IOException;
import java.io.Serializable;
import java.lang.reflect.*;
import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
import sun.misc.Unsafe;

/**
 * A multi-threaded bit-vector set, implemented as an array of primitive
 * {@code longs}.  All operations are non-blocking and multi-threaded safe.
 * {@link #contains(int)} calls are roughly the same speed as a {load, mask}
 * sequence.  {@link #add(int)} and {@link #remove(int)} calls are a tad more
 * expensive than a {load, mask, store} sequence because they must use a CAS.
 * The bit-vector is auto-sizing.
 *
 * 

General note of caution: The Set API allows the use of {@link Integer} * with silent autoboxing - which can be very expensive if many calls are * being made. Since autoboxing is silent you may not be aware that this is * going on. The built-in API takes lower-case {@code ints} and is much more * efficient. * *

Space: space is used in proportion to the largest element, as opposed to * the number of elements (as is the case with hash-table based Set * implementations). Space is approximately (largest_element/8 + 64) bytes. * * The implementation is a simple bit-vector using CAS for update. * * @since 1.5 * @author Cliff Click */ public class NonBlockingSetInt extends AbstractSet implements Serializable { private static final long serialVersionUID = 1234123412341234123L; private static final Unsafe _unsafe = UtilUnsafe.getUnsafe(); // --- Bits to allow atomic update of the NBSI private static final long _nbsi_offset; static { // Field f = null; try { f = NonBlockingSetInt.class.getDeclaredField("_nbsi"); } catch( java.lang.NoSuchFieldException e ) { } _nbsi_offset = _unsafe.objectFieldOffset(f); } private final boolean CAS_nbsi( NBSI old, NBSI nnn ) { return _unsafe.compareAndSwapObject(this, _nbsi_offset, old, nnn ); } // The actual Set of Joy, which changes during a resize event. The // Only Field for this class, so I can atomically change the entire // set implementation with a single CAS. private transient NBSI _nbsi; /** Create a new empty bit-vector */ public NonBlockingSetInt( ) { _nbsi = new NBSI(63, new Counter(), this); // The initial 1-word set } /** * Add {@code i} to the set. Uppercase {@link Integer} version of add, * requires auto-unboxing. When possible use the {@code int} version of * {@link #add(int)} for efficiency. * @throws IllegalArgumentException if i is negative. * @return true if i was added to the set. */ public boolean add ( final Integer i ) { return add(i.intValue()); } /** * Test if {@code o} is in the set. This is the uppercase {@link Integer} * version of contains, requires a type-check and auto-unboxing. When * possible use the {@code int} version of {@link #contains(int)} for * efficiency. * @return true if i was in the set. */ public boolean contains( final Object o ) { return o instanceof Integer ? contains(((Integer)o).intValue()) : false; } /** * Remove {@code o} from the set. This is the uppercase {@link Integer} * version of remove, requires a type-check and auto-unboxing. When * possible use the {@code int} version of {@link #remove(int)} for * efficiency. * @return true if i was removed to the set. */ public boolean remove( final Object o ) { return o instanceof Integer ? remove (((Integer)o).intValue()) : false; } /** * Add {@code i} to the set. This is the lower-case '{@code int}' version * of {@link #add} - no autoboxing. Negative values throw * IllegalArgumentException. * @throws IllegalArgumentException if i is negative. * @return true if i was added to the set. */ public boolean add( final int i ) { if( i < 0 ) throw new IllegalArgumentException(""+i); return _nbsi.add(i); } /** * Test if {@code i} is in the set. This is the lower-case '{@code int}' * version of {@link #contains} - no autoboxing. * @return true if i was int the set. */ public boolean contains( final int i ) { return i<0 ? false : _nbsi.contains(i); } /** * Remove {@code i} from the set. This is the fast lower-case '{@code int}' * version of {@link #remove} - no autoboxing. * @return true if i was added to the set. */ public boolean remove ( final int i ) { return i<0 ? false : _nbsi.remove (i); } /** * Current count of elements in the set. Due to concurrent racing updates, * the size is only ever approximate. Updates due to the calling thread are * immediately visible to calling thread. * @return count of elements. */ public int size ( ) { return _nbsi.size( ); } /** Empty the bitvector. */ public void clear ( ) { NBSI cleared = new NBSI(63, new Counter(), this); // An empty initial NBSI while( !CAS_nbsi( _nbsi, cleared ) ) // Spin until clear works ; } /** Verbose printout of internal structure for debugging. */ public void print() { _nbsi.print(0); } /** * Standard Java {@link Iterator}. Not very efficient because it * auto-boxes the returned values. */ public Iterator iterator( ) { return new iter(); } private class iter implements Iterator { NBSI _nbsi2; int _idx = -1; int _prev = -1; iter() { _nbsi2 = _nbsi; advance(); } public boolean hasNext() { return _idx != -2; } private void advance() { while( true ) { _idx++; // Next index while( (_idx>>6) >= _nbsi2._bits.length ) { // Index out of range? if( _nbsi2._new == null ) { // New table? _idx = -2; // No, so must be all done return; // } _nbsi2 = _nbsi2._new; // Carry on, in the new table } if( _nbsi2.contains(_idx) ) return; } } public Integer next() { if( _idx == -1 ) throw new NoSuchElementException(); _prev = _idx; advance(); return _prev; } public void remove() { if( _prev == -1 ) throw new IllegalStateException(); _nbsi2.remove(_prev); _prev = -1; } } // --- writeObject ------------------------------------------------------- // Write a NBSI to a stream private void writeObject(java.io.ObjectOutputStream s) throws IOException { s.defaultWriteObject(); // Nothing to write final NBSI nbsi = _nbsi; // The One Field is transient final int len = _nbsi._bits.length<<6; s.writeInt(len); // Write max element for( int i=0; i= 0 && idx < ary.length; return _Lbase + idx * _Lscale; } private final boolean CAS( int idx, long old, long nnn ) { return _unsafe.compareAndSwapLong( _bits, rawIndex(_bits, idx), old, nnn ); } // --- Resize // The New Table, only set once to non-zero during a resize. // Must be atomically set. private NBSI _new; private static final long _new_offset; static { // Field f = null; try { f = NBSI.class.getDeclaredField("_new"); } catch( java.lang.NoSuchFieldException e ) { } _new_offset = _unsafe.objectFieldOffset(f); } private final boolean CAS_new( NBSI nnn ) { return _unsafe.compareAndSwapObject(this, _new_offset, null, nnn ); } private transient final AtomicInteger _copyIdx; // Used to count bits started copying private transient final AtomicInteger _copyDone; // Used to count words copied in a resize operation private transient final int _sum_bits_length; // Sum of all nested _bits.lengths private static final long mask( int i ) { return 1L<<(i&63); } // I need 1 free bit out of 64 to allow for resize. I do this by stealing // the high order bit - but then I need to do something with adding element // number 63 (and friends). I could use a mod63 function but it's more // efficient to handle the mod-64 case as an exception. // // Every 64th bit is put in it's own recursive bitvector. If the low 6 bits // are all set, we shift them off and recursively operate on the _nbsi64 set. private final NBSI _nbsi64; private NBSI( int max_elem, Counter ctr, NonBlockingSetInt nonb ) { super(); _non_blocking_set_int = nonb; _size = ctr; _copyIdx = ctr == null ? null : new AtomicInteger(); _copyDone = ctr == null ? null : new AtomicInteger(); // The main array of bits _bits = new long[(int)(((long)max_elem+63)>>>6)]; // Every 64th bit is moved off to it's own subarray, so that the // sign-bit is free for other purposes _nbsi64 = ((max_elem+1)>>>6) == 0 ? null : new NBSI((max_elem+1)>>>6, null, null); _sum_bits_length = _bits.length + (_nbsi64==null ? 0 : _nbsi64._sum_bits_length); } // Lower-case 'int' versions - no autoboxing, very fast. // 'i' is known positive. public boolean add( final int i ) { // Check for out-of-range for the current size bit vector. // If so we need to grow the bit vector. if( (i>>6) >= _bits.length ) return install_larger_new_bits(i). // Install larger pile-o-bits (duh) help_copy().add(i); // Finally, add to the new table // Handle every 64th bit via using a nested array NBSI nbsi = this; // The bit array being added into int j = i; // The bit index being added while( (j&63) == 63 ) { // Bit 64? (low 6 bits are all set) nbsi = nbsi._nbsi64; // Recurse j = j>>6; // Strip off low 6 bits (all set) } final long mask = mask(j); long old; do { old = nbsi._bits[j>>6]; // Read old bits if( old < 0 ) // Not mutable? // Not mutable: finish copy of word, and retry on copied word return help_copy_impl(i).help_copy().add(i); if( (old & mask) != 0 ) return false; // Bit is already set? } while( !nbsi.CAS( j>>6, old, old | mask ) ); _size.add(1); return true; } public boolean remove( final int i ) { if( (i>>6) >= _bits.length ) // Out of bounds? Not in this array! return _new==null ? false : help_copy().remove(i); // Handle every 64th bit via using a nested array NBSI nbsi = this; // The bit array being added into int j = i; // The bit index being added while( (j&63) == 63 ) { // Bit 64? (low 6 bits are all set) nbsi = nbsi._nbsi64; // Recurse j = j>>6; // Strip off low 6 bits (all set) } final long mask = mask(j); long old; do { old = nbsi._bits[j>>6]; // Read old bits if( old < 0 ) // Not mutable? // Not mutable: finish copy of word, and retry on copied word return help_copy_impl(i).help_copy().remove(i); if( (old & mask) == 0 ) return false; // Bit is already clear? } while( !nbsi.CAS( j>>6, old, old & ~mask ) ); _size.add(-1); return true; } public boolean contains( final int i ) { if( (i>>6) >= _bits.length ) // Out of bounds? Not in this array! return _new==null ? false : help_copy().contains(i); // Handle every 64th bit via using a nested array NBSI nbsi = this; // The bit array being added into int j = i; // The bit index being added while( (j&63) == 63 ) { // Bit 64? (low 6 bits are all set) nbsi = nbsi._nbsi64; // Recurse j = j>>6; // Strip off low 6 bits (all set) } final long mask = mask(j); long old = nbsi._bits[j>>6]; // Read old bits if( old < 0 ) // Not mutable? // Not mutable: finish copy of word, and retry on copied word return help_copy_impl(i).help_copy().contains(i); // Yes mutable: test & return bit return (old & mask) != 0; } public int size() { return (int)_size.get(); } // Must grow the current array to hold an element of size i private NBSI install_larger_new_bits( final int i ) { if( _new == null ) { // Grow by powers of 2, to avoid minor grow-by-1's. // Note: must grow by exact powers-of-2 or the by-64-bit trick doesn't work right int sz = (_bits.length<<6)<<1; // CAS to install a new larger size. Did it work? Did it fail? We // don't know and don't care. Only One can be installed, so if // another thread installed a too-small size, we can't help it - we // must simply install our new larger size as a nested-resize table. CAS_new(new NBSI(sz, _size, _non_blocking_set_int)); } // Return self for 'fluid' programming style return this; } // Help any top-level NBSI to copy until completed. // Always return the _new version of *this* NBSI, in case we're nested. private NBSI help_copy() { // Pick some words to help with - but only help copy the top-level NBSI. // Nested NBSI waits until the top is done before we start helping. NBSI top_nbsi = _non_blocking_set_int._nbsi; final int HELP = 8; // Tuning number: how much copy pain are we willing to inflict? // We "help" by forcing individual bit indices to copy. However, bits // come in lumps of 64 per word, so we just advance the bit counter by 64's. int idx = top_nbsi._copyIdx.getAndAdd(64*HELP); for( int i=0; i>6; // Strip off low 6 bits (all set) } // Transit from state 1: word is not immutable yet // Immutable is in bit 63, the sign bit. long bits = old._bits[j>>6]; while( bits >= 0 ) { // Still in state (1)? long oldbits = bits; bits |= mask(63); // Target state of bits: sign-bit means immutable if( old.CAS( j>>6, oldbits, bits ) ) { if( oldbits == 0 ) _copyDone.addAndGet(1); break; // Success - old array word is now immutable } bits = old._bits[j>>6]; // Retry if CAS failed } // Transit from state 2: non-zero in old and zero in new if( bits != mask(63) ) { // Non-zero in old? long new_bits = nnn._bits[j>>6]; if( new_bits == 0 ) { // New array is still zero new_bits = bits & ~mask(63); // Desired new value: a mutable copy of bits // One-shot CAS attempt, no loop, from 0 to non-zero. // If it fails, somebody else did the copy for us if( !nnn.CAS( j>>6, 0, new_bits ) ) new_bits = nnn._bits[j>>6]; // Since it failed, get the new value assert new_bits != 0; } // Transit from state 3: non-zero in old and non-zero in new // One-shot CAS attempt, no loop, from non-zero to 0 (but immutable) if( old.CAS( j>>6, bits, mask(63) ) ) _copyDone.addAndGet(1); // One more word finished copying } // Now in state 4: zero (and immutable) in old // Return the self bitvector for 'fluid' programming style return this; } private void print( int d, String msg ) { for( int i=0; i





© 2015 - 2024 Weber Informatics LLC | Privacy Policy