com.github.stephengold.joltjni.Vec3 Maven / Gradle / Ivy
Show all versions of jolt-jni-Windows64 Show documentation
/*
Copyright (c) 2024 Stephen Gold
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
package com.github.stephengold.joltjni;
import com.github.stephengold.joltjni.operator.Op;
import com.github.stephengold.joltjni.readonly.RVec3Arg;
import com.github.stephengold.joltjni.readonly.Vec3Arg;
import java.util.Objects;
/**
* A vector composed of 3 single-precision components, used to represent
* directions, extents, forces, impulses, offsets, scaling factors, torques, and
* velocities in 3-dimensional space.
*
* @author Stephen Gold [email protected]
*/
final public class Vec3 implements Vec3Arg {
// *************************************************************************
// fields
/**
* the first (X) component
*/
private float x;
/**
* the 2nd (Y) component
*/
private float y;
/**
* the 3rd (Z) component
*/
private float z;
/**
* lazily allocated distribution, used in randomization
*/
private static UniformRealDistribution distro = null;
// *************************************************************************
// constructors
/**
* Instantiate an all-zero vector (0,0,0).
*/
public Vec3() {
this.x = 0f;
this.y = 0f;
this.z = 0f;
}
/**
* Instantiate a vector with specified components.
*
* @param x the desired X component
* @param y the desired Y component
* @param z the desired Z component
*/
public Vec3(double x, double y, double z) {
this.x = (float) x;
this.y = (float) y;
this.z = (float) z;
}
/**
* Instantiate a vector with specified components.
*
* @param x the desired X component
* @param y the desired Y component
* @param z the desired Z component
*/
public Vec3(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Instantiate a vector from the specified array.
*
* @param array the desired component values (not null, length≥3,
* unaffected)
*/
public Vec3(float[] array) {
this.x = array[0];
this.y = array[1];
this.z = array[2];
}
/**
* Instantiate from a location vector.
*
* @param vec the vector to copy (not null, unaffected)
*/
public Vec3(RVec3Arg vec) {
this.x = vec.x();
this.y = vec.y();
this.z = vec.z();
}
/**
* Instantiate a copy of the argument.
*
* @param vec the vector to copy (not null, unaffected)
*/
public Vec3(Vec3Arg vec) {
this.x = vec.getX();
this.y = vec.getY();
this.z = vec.getZ();
}
// *************************************************************************
// new methods exposed
/**
* Return the component-wise sum of the specified vectors.
*
* @param vArray an array of input vector (not null, unaffected)
* @return a new vector
*/
public static Vec3 add(Vec3Arg... vArray) {
Vec3 result = new Vec3();
for (Vec3Arg arg : vArray) {
Op.plusEquals(result, arg);
}
return result;
}
/**
* Return the bitwise AND of the specified vectors.
*
* @param v1 the first vector (not null, unaffected)
* @param v2 the 2nd vector (not null, unaffected)
* @return a new vector
*/
public static Vec3 sAnd(Vec3Arg v1, Vec3Arg v2) {
int x1 = Float.floatToRawIntBits(v1.getX());
int x2 = Float.floatToRawIntBits(v2.getX());
float ax = Float.intBitsToFloat(x1 & x2);
int y1 = Float.floatToRawIntBits(v1.getY());
int y2 = Float.floatToRawIntBits(v2.getY());
float ay = Float.intBitsToFloat(y1 & y2);
int z1 = Float.floatToRawIntBits(v1.getZ());
int z2 = Float.floatToRawIntBits(v2.getZ());
float az = Float.intBitsToFloat(z1 & z2);
Vec3 result = new Vec3(ax, ay, az);
return result;
}
/**
* Create a unit vector along the 1st (X) principal axis.
*
* @return a new vector
*/
public static Vec3 sAxisX() {
Vec3 result = new Vec3(1f, 0f, 0f);
return result;
}
/**
* Create a unit vector along the 2nd (Y) principal axis.
*
* @return a new vector
*/
public static Vec3 sAxisY() {
Vec3 result = new Vec3(0f, 1f, 0f);
return result;
}
/**
* Create a unit vector along the 3rd (Z) principal axis.
*
* @return a new vector
*/
public static Vec3 sAxisZ() {
Vec3 result = new Vec3(0f, 0f, 1f);
return result;
}
/**
* Set all 3 components to specified values.
*
* @param x the desired X component
* @param y the desired Y component
* @param z the desired Z component
*/
public void set(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Set all 3 components from the specified array.
*
* @param array the desired component values (not null, length≥3,
* unaffected)
*/
public void set(float[] array) {
this.x = array[0];
this.y = array[1];
this.z = array[2];
}
/**
* Alter the first (X) component.
*
* @param x the desired value
*/
public void setX(float x) {
this.x = x;
}
/**
* Alter the 2nd (Y) component.
*
* @param y the desired value
*/
public void setY(float y) {
this.y = y;
}
/**
* Alter the 3rd (Z) component.
*
* @param z the desired value
*/
public void setZ(float z) {
this.z = z;
}
/**
* Copy the X component to all components.
*/
public void splatX() {
this.y = x;
this.z = x;
}
/**
* Copy the Y component to all components.
*/
public void splatY() {
this.x = y;
this.z = y;
}
/**
* Copy the Z component to all components.
*/
public void splatZ() {
this.x = z;
this.y = z;
}
/**
* Generate a pseudo-random unit vector.
*
* The results are not uniformly distributed over the unit sphere.
*
* @param engine the generator to use (not null)
* @return a new unit vector
*/
public static Vec3 sRandom(DefaultRandomEngine engine) {
assert engine != null;
if (distro == null) {
distro = new UniformRealDistribution(0f, 1f);
}
float theta = Jolt.JPH_PI * distro.nextFloat(engine);
float phi = 2f * Jolt.JPH_PI * distro.nextFloat(engine);
Vec3 result = sUnitSpherical(theta, phi);
return result;
}
/**
* Create a vector with all components identical.
*
* @param value the desired component value
* @return a new vector
*/
public static Vec3 sReplicate(float value) {
Vec3 result = new Vec3(value, value, value);
return result;
}
/**
* Generate a unit vector with the specified spherical coordinates.
*
* @param theta angle from the +Z axis (in radians)
* @param phi angle from the +X axis in the X-Y plane (in radians)
* @return a new unit vector
*/
public static Vec3 sUnitSpherical(float theta, float phi) {
float sinTheta = Jolt.sin(theta);
float vx = sinTheta * Jolt.cos(phi);
float vy = sinTheta * Jolt.sin(phi);
float vz = Jolt.cos(theta);
Vec3 result = new Vec3(vx, vy, vz);
return result;
}
/**
* Create a vector with all components zero.
*
* @return a new vector
*/
public static Vec3 sZero() {
Vec3 result = new Vec3();
return result;
}
// *************************************************************************
// Vec3Arg methods
/**
* Return the cross product with the specified vector. The current vector is
* unaffected.
*
* @param rightFactor the vector to cross with the current one (not null,
* unaffected)
* @return a new product vector
*/
@Override
public Vec3 cross(Vec3Arg rightFactor) {
float rx = rightFactor.getX();
float ry = rightFactor.getY();
float rz = rightFactor.getZ();
float px = y * rz - z * ry;
float py = z * rx - x * rz;
float pz = x * ry - y * rx;
Vec3 result = new Vec3(px, py, pz);
return result;
}
/**
* Return the dot product with the specified vector. The current vector is
* unaffected.
*
* @param factor the vector to dot with the current one (not null,
* unaffected)
* @return the dot product
*/
@Override
public float dot(Vec3Arg factor) {
float result
= x * factor.getX() + y * factor.getY() + z * factor.getZ();
return result;
}
/**
* Return the specified component. The vector is unaffected.
*
* @param index 0, 1, or 2
* @return the X component if index=0, the Y component if index=1, or the Z
* component if index=2
* @throws IllegalArgumentException if index is not 0, 1, or 2
*/
@Override
public float get(int index) {
switch (index) {
case 0:
return x;
case 1:
return y;
case 2:
return z;
default:
throw new IllegalArgumentException(
"index must be either 0, 1 or 2");
}
}
/**
* Return an arbitrary unit vector perpendicular to the current vector. The
* current vector is unaffected.
*
* @return a new vector
*/
@Override
public Vec3 getNormalizedPerpendicular() {
if (Math.abs(x) > Math.abs(y)) {
float len = Jolt.sqrt(x * x + z * z);
return new Vec3(z / len, 0f, -x / len);
} else {
float len = Jolt.sqrt(y * y + z * z);
return new Vec3(0f, z / len, -y / len);
}
}
/**
* Return the first (X) component in single precision. The vector is
* unaffected.
*
* @return the component value
*/
@Override
public float getX() {
return x;
}
/**
* Return the 2nd (Y) component in single precision. The vector is
* unaffected.
*
* @return the component value
*/
@Override
public float getY() {
return y;
}
/**
* Return the 3rd (Z) component in single precision. The vector is
* unaffected.
*
* @return the component value
*/
@Override
public float getZ() {
return z;
}
/**
* Test whether the vector is zero to within a tolerance of 10^-12. The
* vector is unaffected.
*
* @return {@code true} if near zero, otherwise {@code false}
*/
@Override
public boolean isNearZero() {
boolean result = isNearZero(1e-12f);
return result;
}
/**
* Test whether the vector is zero to within the specified tolerance. The
* vector is unaffected.
*
* @param tolerance the desired tolerance (default=1e-12)
* @return {@code true} if near zero, otherwise {@code false}
*/
@Override
public boolean isNearZero(float tolerance) {
float lengthSq = lengthSq();
if (lengthSq <= tolerance) {
return true;
} else {
return false;
}
}
/**
* Test whether the vector is normalized to within a tolerance of 10^-6. The
* vector is unaffected.
*
* @return {@code true} if normalized, otherwise {@code false}
*/
@Override
public boolean isNormalized() {
boolean result = isNormalized(1e-6f);
return result;
}
/**
* Test whether the vector is normalized to within the specified tolerance.
* The vector is unaffected.
*
* @param tolerance the desired tolerance (default=1e-6)
* @return {@code true} if normalized, otherwise {@code false}
*/
@Override
public boolean isNormalized(float tolerance) {
float lengthSq = lengthSq();
if (Math.abs(lengthSq - 1f) <= tolerance) {
return true;
} else {
return false;
}
}
/**
* Return the length. The vector is unaffected.
*
* @return the length
*/
@Override
public float length() {
float lengthSq = lengthSq();
float result = Jolt.sqrt(lengthSq);
return result;
}
/**
* Return the squared length. The vector is unaffected.
*
* @return the squared length
*/
@Override
public float lengthSq() {
float result = x * x + y * y + z * z;
return result;
}
/**
* Generate a normalized vector with the same direction. The current vector
* is unaffected.
*
* @return a new vector
*/
@Override
public Vec3 normalized() {
Vec3 result = Op.multiply(1f / length(), this);
return result;
}
/**
* Return a copy of the argument if the length of the current vector is
* zero. Otherwise, generate a normalized vector with the same direction as
* the current vector. The current vector is unaffected.
*
* @param zeroValue the value to return if the length is zero (not null,
* unaffected)
* @return a new vector
*/
@Override
public Vec3 normalizedOr(Vec3Arg zeroValue) {
Vec3 result;
float lengthSq = lengthSq();
if (lengthSq == 0f) {
result = new Vec3(zeroValue);
} else {
float length = Jolt.sqrt(lengthSq);
if (length == 0f) {
result = new Vec3(zeroValue);
} else {
result = Op.multiply(1f / length, this);
}
}
return result;
}
/**
* Generate the component-wise reciprocal. The current vector is unaffected.
*
* @return a new vector
*/
@Override
public Vec3 reciprocal() {
Vec3 result = new Vec3(1f / x, 1f / y, 1f / z);
return result;
}
/**
* Copy the components to an array. The vector is unaffected.
*
* @return a new array with length=3
*/
@Override
public float[] toArray() {
float[] result = new float[3];
result[0] = x;
result[1] = y;
result[2] = z;
return result;
}
// *************************************************************************
// Object methods
/**
* Tests for exact equality with the argument, distinguishing -0 from 0. If
* {@code other} is null, false is returned. Either way, the current
* instance is unaffected.
*
* @param other the object to compare (may be null, unaffected)
* @return {@code true} if {@code this} and {@code other} have identical
* values, otherwise {@code false}
*/
@Override
public boolean equals(Object other) {
if (this == other) {
return true;
} else if (other == null) {
return false;
} else if (getClass() != other.getClass()) {
return false;
}
final Vec3Arg otherVector = (Vec3Arg) other;
if (Float.compare(x, otherVector.getX()) != 0) {
return false;
} else if (Float.compare(y, otherVector.getY()) != 0) {
return false;
} else {
return Float.compare(z, otherVector.getZ()) == 0;
}
}
/**
* Return a hash code. If two vectors have identical values, they will have
* the same hash code. The vector is unaffected.
*
* @return a 32-bit value for use in hashing
*/
@Override
public int hashCode() {
int result = Objects.hash(x, y, z);
return result;
}
/**
* Return a string representation of the vector, which is unaffected. For
* example, a zero vector is represented by:
*
* Vec3(0.0 0.0 0.0)
*
*
* @return the string representation (not null, not empty)
*/
@Override
public String toString() {
String result = "Vec3(" + x + " " + y + " " + z + ")";
return result;
}
}