All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.mallet.classify.tui.SvmLight2Classify Maven / Gradle / Ivy

Go to download

MALLET is a Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to text.

There is a newer version: 2.0.12
Show newest version
/* Copyright (C) 2010 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org.  For further
information, see the file `LICENSE' included with this distribution. */

package cc.mallet.classify.tui;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.logging.*;
import java.util.regex.*;
import java.io.*;
import java.nio.charset.Charset;

import cc.mallet.classify.*;
import cc.mallet.pipe.Pipe;
import cc.mallet.pipe.SerialPipes;
import cc.mallet.pipe.SvmLight2FeatureVectorAndLabel;
import cc.mallet.pipe.iterator.*;
import cc.mallet.types.*;
import cc.mallet.util.*;

/**
 * Command line tool for classifying a sequence of instances directly from text
 * input, without creating an instance list.
 * 

* * @author David Mimno * @author Gregory Druck * @author Siddhartha Jonnalagadda */ public class SvmLight2Classify { private static Logger logger = MalletLogger.getLogger(SvmLight2Classify.class.getName()); static CommandOption.File inputFile = new CommandOption.File( SvmLight2Classify.class, "input", "FILE", true, null, "The file containing data to be classified, one instance per line", null); static CommandOption.File outputFile = new CommandOption.File( SvmLight2Classify.class, "output", "FILE", true, new File("text.vectors"), "Write predictions to this file; Using - indicates stdout.", null); static CommandOption.File classifierFile = new CommandOption.File( SvmLight2Classify.class, "classifier", "FILE", true, new File("classifier"), "Use the pipe and alphabets from a previously created vectors file.\n" + " Allows the creation, for example, of a test set of vectors that are\n" + " compatible with a previously created set of training vectors", null); static CommandOption.String encoding = new CommandOption.String( SvmLight2Classify.class, "encoding", "STRING", true, Charset.defaultCharset().displayName(), "Character encoding for input file", null); public static void main(String[] args) throws FileNotFoundException, IOException { // Process the command-line options CommandOption.setSummary(SvmLight2Classify.class, "A tool for classifying a stream of unlabeled instances"); CommandOption.process(SvmLight2Classify.class, args); // Print some helpful messages for error cases if (args.length == 0) { CommandOption.getList(SvmLight2Classify.class).printUsage(false); System.exit(-1); } if (inputFile == null) { throw new IllegalArgumentException( "You must include `--input FILE ...' in order to specify a" + "file containing the instances, one per line."); } // Read classifier from file Classifier classifier = null; try { ObjectInputStream ois = new ObjectInputStream(new BufferedInputStream( new FileInputStream(classifierFile.value))); classifier = (Classifier) ois.readObject(); ois.close(); } catch (Exception e) { throw new IllegalArgumentException( "Problem loading classifier from file " + classifierFile.value + ": "+ e.getMessage()); } // [email protected] // Stop growth on the alphabets. If this is not done and new // features are added, the feature and classifier parameter // indices will not match. classifier.getInstancePipe().getDataAlphabet().stopGrowth(); classifier.getInstancePipe().getTargetAlphabet().stopGrowth(); // Build a new pipe InstanceList instances = new InstanceList(classifier.getInstancePipe()); Reader fileReader; if (inputFile.value.toString().equals("-")) { fileReader = new InputStreamReader(System.in); } else { fileReader = new InputStreamReader(new FileInputStream(inputFile.value),encoding.value); } // Read instances from the file instances.addThruPipe(new SelectiveFileLineIterator(fileReader, "^\\s*#.+")); Iterator iterator = instances.iterator(); // Write classifications to the output file PrintStream out = null; if (outputFile.value.toString().equals("-")) { out = System.out; } else { out = new PrintStream(outputFile.value, encoding.value); } while (iterator.hasNext()) { Instance instance = iterator.next(); Labeling labeling = classifier.classify(instance).getLabeling(); StringBuilder output = new StringBuilder(); output.append(instance.getName()); for (int location = 0; location < labeling.numLocations(); location++) { output.append("\t" + labeling.labelAtLocation(location)); output.append("\t" + labeling.valueAtLocation(location)); } out.println(output); } if (!outputFile.value.toString().equals("-")) { out.close(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy