
cc.mallet.pipe.tsf.TokenTextCharNGrams Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mallet Show documentation
Show all versions of mallet Show documentation
MALLET is a Java-based package for statistical natural language processing,
document classification, clustering, topic modeling, information extraction,
and other machine learning applications to text.
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org. For further
information, see the file `LICENSE' included with this distribution. */
/**
Add the token text as a feature with value 1.0.
@author Andrew McCallum [email protected]
*/
package cc.mallet.pipe.tsf;
import java.io.*;
import java.util.regex.Pattern;
import cc.mallet.pipe.*;
import cc.mallet.types.*;
public class TokenTextCharNGrams extends Pipe implements Serializable
{
static char startBorderChar = '>';
static char endBorderChar = '<';
String prefix;
int[] gramSizes;
boolean distinguishBorders = false;
public TokenTextCharNGrams (String prefix, int[] gramSizes, boolean distinguishBorders)
{
this.prefix=prefix;
this.gramSizes = gramSizes;
this.distinguishBorders = distinguishBorders;
}
public TokenTextCharNGrams (String prefix, int[] gramSizes)
{
this.prefix=prefix;
this.gramSizes = gramSizes;
}
public TokenTextCharNGrams ()
{
this ("CHARBIGRAM=", new int[] {2});
}
public Instance pipe (Instance carrier)
{
TokenSequence ts = (TokenSequence) carrier.getData();
for (int i = 0; i < ts.size(); i++) {
Token t = ts.get(i);
String s = t.getText();
if (distinguishBorders)
s = startBorderChar + s + endBorderChar;
int slen = s.length();
for (int j = 0; j < gramSizes.length; j++) {
int size = gramSizes[j];
for (int k = 0; k < (slen - size)+1; k++)
t.setFeatureValue ((prefix + s.substring (k, k+size)), 1.0);
}
}
return carrier;
}
// Serialization
// Version 0 : Initial (Saved prefix & gram sizes)
// Version 1 : Save distinguishBorders
private static final long serialVersionUID = 1;
private static final int CURRENT_SERIAL_VERSION = 1;
private void writeObject (ObjectOutputStream out) throws IOException {
out.writeInt (CURRENT_SERIAL_VERSION);
out.writeObject (prefix);
out.writeInt (gramSizes.length);
for (int i = 0; i < gramSizes.length; i++)
out.writeInt (gramSizes[i]);
out.writeBoolean (distinguishBorders);
}
private void readObject (ObjectInputStream in) throws IOException, ClassNotFoundException {
int version = in.readInt ();
prefix = (String) in.readObject();
int gsl = in.readInt ();
if (gsl > 0) {
gramSizes = new int[gsl];
for (int i = 0; i < gsl; i++)
gramSizes[i] = in.readInt();
}
if (version >= 1) {
distinguishBorders = in.readBoolean ();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy