Download all versions of LBFGS JAR files with all dependencies
LBFGS from group com.github.thssmonkey (version 1.0.4)
Limited-memory BFGS (L-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer memory. It is a popular algorithm for parameter estimation in machine learning. The algorithm's target problem is to minimize f(x) over unconstrained values of the real-vector x where f is a differentiable scalar function.
Artifact LBFGS
Group com.github.thssmonkey
Version 1.0.4
Last update 16. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
Group com.github.thssmonkey
Version 1.0.4
Last update 16. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
LBFGS from group com.github.thssmonkey (version 1.0.3)
Limited-memory BFGS (L-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer memory. It is a popular algorithm for parameter estimation in machine learning. The algorithm's target problem is to minimize f(x) over unconstrained values of the real-vector x where f is a differentiable scalar function.
Artifact LBFGS
Group com.github.thssmonkey
Version 1.0.3
Last update 02. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
Group com.github.thssmonkey
Version 1.0.3
Last update 02. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
LBFGS from group com.github.thssmonkey (version 1.0.2)
Limited-memory BFGS (L-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer memory. It is a popular algorithm for parameter estimation in machine learning. The algorithm's target problem is to minimize f(x) over unconstrained values of the real-vector x where f is a differentiable scalar function.
Artifact LBFGS
Group com.github.thssmonkey
Version 1.0.2
Last update 01. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
Group com.github.thssmonkey
Version 1.0.2
Last update 01. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
LBFGS from group com.github.thssmonkey (version 1.0.1)
Limited-memory BFGS (L-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm using a limited amount of computer memory. It is a popular algorithm for parameter estimation in machine learning. The algorithm's target problem is to minimize f(x) over unconstrained values of the real-vector x where f is a differentiable scalar function.
0 downloads
Artifact LBFGS
Group com.github.thssmonkey
Version 1.0.1
Last update 01. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
Group com.github.thssmonkey
Version 1.0.1
Last update 01. May 2019
Tags: computer methods limited using estimation broyden bfgs where shanno algorithm function amount real over values parameter vector family scalar fletcher goldfarb optimization problem minimize learning machine memory quasi differentiable newton that approximates popular target unconstrained
Organization not specified
URL https://github.com/thssmonkey/LBFGS
License The Apache Software License, Version 2.0
Dependencies amount 4
Dependencies flink-scala_${scala.binary.version}, flink-streaming-scala_${scala.binary.version}, flink-clients_${scala.binary.version}, flink-ml_${scala.binary.version},
There are maybe transitive dependencies!
Page 1 from 1 (items total 4)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy