Please wait. This can take some minutes ...
Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance.
Project price only 1 $
You can buy this project and download/modify it how often you want.
com.github.tjake.jlama.model.AbstractModel Maven / Gradle / Ivy
/*
* Copyright 2024 T Jake Luciani
*
* The Jlama Project licenses this file to you under the Apache License,
* version 2.0 (the "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*/
package com.github.tjake.jlama.model;
import static com.github.tjake.jlama.util.DebugSupport.debug;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.github.tjake.jlama.math.ActivationFunction;
import com.github.tjake.jlama.math.VectorMath;
import com.github.tjake.jlama.model.functions.*;
import com.github.tjake.jlama.safetensors.Config;
import com.github.tjake.jlama.safetensors.DType;
import com.github.tjake.jlama.safetensors.WeightLoader;
import com.github.tjake.jlama.safetensors.prompt.PromptContext;
import com.github.tjake.jlama.safetensors.prompt.PromptSupport;
import com.github.tjake.jlama.safetensors.prompt.Tool;
import com.github.tjake.jlama.safetensors.prompt.ToolCall;
import com.github.tjake.jlama.safetensors.tokenizer.Tokenizer;
import com.github.tjake.jlama.tensor.*;
import com.github.tjake.jlama.tensor.operations.TensorOperationsProvider;
import com.github.tjake.jlama.util.DebugSupport;
import com.github.tjake.jlama.util.JsonSupport;
import com.google.common.base.Preconditions;
import com.google.common.primitives.Ints;
import java.nio.FloatBuffer;
import java.util.*;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;
import java.util.function.BiConsumer;
import java.util.function.Consumer;
import java.util.stream.Collectors;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
public abstract class AbstractModel implements Generator {
private static final Logger logger = LoggerFactory.getLogger(AbstractModel.class);
public enum InferenceType {
// Used for distributed inference
INPUT_TO_EMBEDDING(true, false, false, false, false),
OUTPUT_TO_TOKEN(false, false, true, false, false),
FORWARD_PASS(true, true, false, false, false),
// Used for different types of inference
FULL_GENERATION(true, true, true, false, false),
FULL_CLASSIFICATION(true, true, false, true, true),
FULL_EMBEDDING(true, true, false, false, true);
final boolean isInput;
final boolean isOutput;
final boolean isClassify;
final boolean isFwdPass;
final boolean isPooling;
InferenceType(boolean isInput, boolean isFwdPass, boolean isOutput, boolean isClassify, boolean isPooling) {
this.isInput = isInput;
this.isOutput = isOutput;
this.isFwdPass = isFwdPass;
this.isClassify = isClassify;
this.isPooling = isPooling;
}
}
protected final InferenceType inferenceType;
protected final Config c;
protected final WeightLoader weights;
protected final Tokenizer tokenizer;
protected final DType modelDType;
protected final DType workingDType;
protected final DType workingQType;
protected final Optional modelQType;
protected EmbedInput embedInput;
protected SampleOutput sampleOutput;
protected ClassifyOutput classifyOutput;
protected Optional poolingLayer;
protected TransformerBlock[] transformerBlocks;
protected KvBufferCache kvBufferCache;
protected AbstractModel(
InferenceType inferenceType,
Config c,
WeightLoader w,
Tokenizer t,
DType workingMemoryDType,
DType workingMemoryQType,
Optional modelQType
) {
this.inferenceType = inferenceType;
this.c = c;
this.weights = w;
this.tokenizer = t;
this.modelDType = w.getModelDType();
this.workingDType = workingMemoryDType;
this.modelQType = modelQType;
this.kvBufferCache = new KvBufferCache(this);
// FIXME: This is a hack to support Avoid Q8F32 evals
if (modelDType == DType.F32 && workingMemoryQType != DType.F32 && modelQType.isEmpty()) {
workingMemoryQType = DType.F32;
}
// FIXME: This is a hack to support Avoid Q8BF16 evals
if (modelDType == DType.BF16 && workingMemoryQType != DType.BF16 && modelQType.isEmpty()) {
workingMemoryQType = DType.BF16;
}
if (workingMemoryQType != workingMemoryDType) {
boolean supportsQType;
AbstractTensor tmp = makeDenseTensor(Q8ByteBufferTensor.BLOCK_SIZE);
try (AbstractTensor tmp2 = TensorOperationsProvider.get().quantize(tmp, workingMemoryQType, 0, Q8ByteBufferTensor.BLOCK_SIZE)) {
supportsQType = tmp2.dType() == workingMemoryQType;
if (!supportsQType) {
logger.warn("Quantized memory type {} not supported, falling back to {}", workingMemoryQType, workingMemoryDType);
this.workingQType = this.workingDType;
} else {
this.workingQType = workingMemoryQType;
}
}
} else {
this.workingQType = workingMemoryQType;
}
logger.info(
"Model type = {}, Working memory type = {}, Quantized memory type = {}",
this.modelDType,
this.workingDType,
this.workingQType
);
this.embedInput = inferenceType.isInput ? loadInputWeights() : null;
this.transformerBlocks = inferenceType.isFwdPass ? loadTransformerBlockWeights() : null;
this.sampleOutput = inferenceType.isOutput ? loadOutputWeights() : null;
this.classifyOutput = inferenceType.isClassify ? loadClassifierWeights() : null;
this.poolingLayer = inferenceType.isPooling ? Optional.ofNullable(loadPoolingWeights()) : Optional.empty();
}
protected abstract EmbedInput loadInputWeights();
protected abstract TransformerBlock[] loadTransformerBlockWeights();
protected abstract SampleOutput loadOutputWeights();
protected ClassifyOutput loadClassifierWeights() {
throw new UnsupportedOperationException("Classification not supported by this model");
}
protected PoolingLayer loadPoolingWeights() {
return null;
}
public abstract ModelSupport.ModelType getModelType();
public InferenceType getInferenceType() {
return inferenceType;
}
public DType getWorkingDType() {
return workingDType;
}
public Config getConfig() {
return c;
}
public Tokenizer getTokenizer() {
return tokenizer;
}
public WeightLoader getWeights() {
return weights;
}
public Optional promptSupport() {
return tokenizer.promptSupport();
}
public AbstractTensor makeTensor(int... shape) {
TensorShape s = TensorShape.of(shape);
return c.tensorCache.get(workingDType, s);
}
public AbstractTensor makeDenseTensor(int... shape) {
return c.tensorCache.get(workingDType, TensorShape.of(shape));
}
protected AbstractTensor maybeQuantize(AbstractTensor t) {
AbstractTensor t2 = c.tensorCache.get(t.dType(), t.shape());
t2.copyFrom(t, 0, 0, Ints.checkedCast(t.size()));
return t2;
}
protected AbstractTensor forward(int token_id, int pos, KvBufferCache.KvBuffer kvbuf) {
return forward(token_id, pos, kvbuf, Optional.empty());
}
/**
* This is a distributed version of forward pass that serves as a coordination point for the
* distributed model. The layers are split into one or more heads and each head is processed
* by a different node.
*
* @param token_id
* @param pos
* @param kvbuf
* @return
*/
public AbstractTensor forward(
int token_id,
int pos,
KvBufferCache.KvBuffer kvbuf,
Optional>> tensorReducer
) {
AbstractTensor embedding = embedInput.inputTokenToEmbedding(token_id, pos);
debug("EMBEDDING TOKEN", token_id);
debug("TOKEN POSITION", pos);
for (int i = c.dctx().layerStart; i < c.dctx().layerEnd; i++) {
AbstractTensor ref = embedding; // reference so we can free
embedding = transformerBlocks[i].forward(embedding, pos, kvbuf, tensorReducer);
ref.close();
}
return embedding;
}
protected AbstractTensor batchForwardSlow(int[] token_ids, int startPos, KvBufferCache.KvBuffer kvbuf) {
AbstractTensor last = null;
for (int i = 0; i < token_ids.length; i++) {
if (last != null) last.close();
last = forward(token_ids[i], startPos + i, kvbuf);
}
return last;
}
public AbstractTensor batchForward(int[] token_ids, int startPos, KvBufferCache.KvBuffer kvbuf) {
return batchForward(token_ids, startPos, kvbuf, Optional.empty());
}
public AbstractTensor batchForward(
int[] token_ids,
int startPos,
KvBufferCache.KvBuffer kvbuf,
Optional>> tensorReducer
) {
AbstractTensor embedding = embedInput.batchInputsToEmbeddings(token_ids, startPos);
for (int i = c.dctx().layerStart; i < c.dctx().layerEnd; i++) {
AbstractTensor ref = embedding; // reference so we can free
embedding = transformerBlocks[i].forward(embedding, startPos, kvbuf, tensorReducer);
ref.close();
}
return embedding;
}
@Override
public float[] embed(String input, PoolingType poolingType) {
int[] encoded = Arrays.stream(tokenizer.encode(input)).mapToInt(Ints::checkedCast).toArray();
Preconditions.checkArgument(encoded.length < c.contextLength);
float[] outputEmbedding = new float[c.embeddingLength];
try (KvBufferCache.KvBuffer kvmem = kvBufferCache.getKvBuffer(UUID.randomUUID())) {
int promptLength = encoded.length;
float avgp = 1.0f / promptLength;
try (AbstractTensor r = batchForward(encoded, 0, kvmem)) {
if (poolingType == PoolingType.MODEL) {
if (poolingLayer.isPresent()) {
// Get the last value should represent the sum of the prompt (due to attention)
AbstractTensor output = r.slice(promptLength - 1);
AbstractTensor pooled = makeDenseTensor(1, c.embeddingLength);
// Pooling
TensorOperationsProvider.get()
.batchDotProduct(pooled, output, poolingLayer.get().getPoolingWeights(), 0, 0, c.embeddingLength);
poolingLayer.get()
.getPoolingBias()
.ifPresent(bias -> { TensorOperationsProvider.get().accumulate(pooled, bias, 0, c.embeddingLength); });
VectorMath.pfor(0, c.embeddingLength, i -> {
// BERT seems to use tanh for pooling rather than gelu
outputEmbedding[i] = ActivationFunction.eval(ActivationFunction.Type.TANH, pooled.get(0, i));
});
return outputEmbedding;
}
throw new UnsupportedOperationException("Pooling layer not found");
}
// No pooling layer, so we just pool manually embeddings
for (int i = 0; i < promptLength; i++) {
AbstractTensor output = r.slice(i);
// Pooling
for (int ii = 0; ii < c.embeddingLength; ii++) {
switch (poolingType) {
case AVG:
outputEmbedding[ii] += output.get(0, ii) * avgp;
break;
case MAX:
outputEmbedding[ii] = Math.max(outputEmbedding[ii], output.get(0, ii));
break;
case SUM:
outputEmbedding[ii] += output.get(0, ii);
break;
}
}
}
}
VectorMath.l2normalize(outputEmbedding);
return outputEmbedding;
}
}
@Override
public Map classify(String input, PoolingType poolingType) {
if (!c.isClassifier() || classifyOutput == null) {
throw new UnsupportedOperationException("Classification not supported by this model");
}
float[] embedding = embed(input, poolingType);
FloatBufferTensor b = new FloatBufferTensor(FloatBuffer.wrap(embedding), TensorShape.of(embedding.length), false);
int classes = classifyOutput.getClassificationWeights().shape().first();
AbstractTensor scores = makeDenseTensor(classes);
TensorOperationsProvider.get().batchDotProduct(scores, b, classifyOutput.getClassificationWeights(), 0, 0, c.embeddingLength);
classifyOutput.getClassificationBias().ifPresent(bias -> { TensorOperationsProvider.get().accumulate(scores, bias, 0, classes); });
VectorMath.softMax(scores, 0, classes);
Map result = new HashMap<>();
for (int i = 0; i < classes; i++) {
String label = c.classifcationLabels.get().inverse().get(i);
Float score = scores.get(0, i);
result.put(label, score);
}
return result;
}
public int sample(AbstractTensor output, float temperature, float uniformSample, AbstractTensor logits) {
try (AbstractTensor embedding = sampleOutput.getOutputLayerNorm().forward(output)) {
// This is a mix of argmax and sampling with softmax
VectorMath.pchunk(0, c.vocabularySize, (chunkStart, chunkSize) -> {
TensorOperationsProvider.get()
.dotProductChunk(logits, embedding, sampleOutput.getOutputLogitsWeights(), 0, c.embeddingLength, chunkStart, chunkSize);
});
int maxi = Integer.MIN_VALUE;
double maxv = Double.NEGATIVE_INFINITY;
for (int i = 0; i < c.vocabularySize; i++) {
float v = logits.get(0, i);
if (v > maxv) {
maxi = i;
maxv = v;
}
}
if (temperature == 0.0) {
return maxi;
}
float sum = 0;
for (int i = 0; i < c.vocabularySize; i++) {
float v = (float) Math.exp((logits.get(0, i) - maxv) / temperature);
sum += v;
logits.set(v, 0, i);
}
float acc = 0;
for (int i = 0; i < c.vocabularySize; i++) {
float v = logits.get(0, i) / sum;
acc += v;
if (acc >= uniformSample) return i;
}
return c.vocabularySize - 1;
}
}
@Override
public Response generate(
UUID sessionId,
PromptContext promptContext,
float temperature,
int ntokens,
BiConsumer onTokenWithTimings
) {
long[] encoded = tokenizer.encode(promptContext.getPrompt());
// Remove BOS token if it's the first token, we explicitly add it below
if (encoded.length > 0 && encoded[0] == c.bosToken) {
encoded = Arrays.copyOfRange(encoded, 1, encoded.length);
}
Preconditions.checkArgument(encoded.length < c.contextLength && encoded.length < ntokens, "Prompt exceeds max tokens");
KvBufferCache.KvBuffer kvmem = kvBufferCache.getKvBuffer(sessionId); // k and v for context window
int startPos = kvmem.getCurrentContextPosition(); // Number of tokens in the buffer
logger.debug("Starting at token {} for session {}", startPos, sessionId);
if (ntokens > c.contextLength) ntokens = c.contextLength;
FinishReason reason = FinishReason.MAX_TOKENS;
int promptLength;
long promptBatchTime;
int tokensGenerated;
StringBuilder responseText = new StringBuilder();
StringBuilder responseTextWithSpecialTokens = new StringBuilder();
try (AbstractTensor logits = makeDenseTensor(c.vocabularySize)) {
int[] promptTokens = new int[(1 + encoded.length)];
promptTokens[0] = c.bosToken;
for (int i = 1; i <= encoded.length; i++)
promptTokens[i] = Ints.checkedCast(encoded[i - 1]);
promptLength = encoded.length;
long start = System.currentTimeMillis();
long promptStart = start;
// Batch Process Prompt
AbstractTensor last = DebugSupport.isDebug()
? batchForwardSlow(promptTokens, startPos, kvmem)
: batchForward(promptTokens, startPos, kvmem);
promptBatchTime = System.currentTimeMillis() - start;
float batchMsPerToken = Math.round((((double) promptBatchTime) / (double) promptLength));
logger.debug("{} prompt tokens in {}ms | {}ms per token", promptLength, promptBatchTime, batchMsPerToken);
float genMsPerToken = 0;
tokensGenerated = 0;
int next = sample(last.slice(last.shape().first() - 1), temperature, ThreadLocalRandom.current().nextFloat(), logits);
last.close();
try {
String c = tokenizer.decode(next);
if (tokenizer.getModel().isSpecialToken(next)) {
responseTextWithSpecialTokens.append(c);
} else {
onTokenWithTimings.accept(c, batchMsPerToken);
responseText.append(c);
responseTextWithSpecialTokens.append(c);
}
} catch (Exception e) {
logger.error("Failed to decode token {}", next, e);
}
start = System.currentTimeMillis();
for (int i = startPos + promptTokens.length; i < ntokens; i++) {
AbstractTensor output = forward(next, i, kvmem);
tokensGenerated++;
next = sample(output, temperature, ThreadLocalRandom.current().nextFloat(), logits);
if (logger.isTraceEnabled()) logger.trace("Sampled token {} with temperature {}", next, temperature);
output.close();
kvmem.incrementContextPosition();
// Model may tell us it's done
if (c.eosTokens.contains(next)) {
reason = FinishReason.STOP_TOKEN;
break;
}
try {
String c = tokenizer.decode(next);
if (tokenizer.getModel().isSpecialToken(next)) {
responseTextWithSpecialTokens.append(c);
} else {
genMsPerToken = (System.currentTimeMillis() - start) / (float) (tokensGenerated);
onTokenWithTimings.accept(c, genMsPerToken);
responseTextWithSpecialTokens.append(c);
responseText.append(c);
}
} catch (Exception e) {
logger.error("Failed to decode token {}", next, e);
}
}
long end = System.currentTimeMillis();
Response response = new Response(
responseText.toString(),
responseTextWithSpecialTokens.toString(),
reason,
promptLength,
tokensGenerated,
promptBatchTime,
end - start
);
logger.debug(
String.format(
"\n\nelapsed: %ds, prompt %.1fms per token, gen %.1fms per token\n",
TimeUnit.MILLISECONDS.toSeconds(end - promptStart),
batchMsPerToken,
genMsPerToken
)
);
return postProcessResponse(promptContext, response);
}
}
/**
* This is a hook for subclasses to post process the response before returning it to the caller.
* For example this can be used to handle tool calls.
* @param response
* @return */
protected Generator.Response postProcessResponse(PromptContext promptContext, Generator.Response response) {
if (!tokenizer.getModel().hasToolSupport() || !promptContext.hasTools() || response.finishReason != FinishReason.STOP_TOKEN) {
return response;
}
// Look for a tool call based on the tool names
List tools = promptContext.getTools().get();
boolean foundTool = false;
for (Tool tool : tools) {
if (response.responseTextWithSpecialTokens.contains(tool.getFunction().getName())) {
foundTool = true;
break;
}
}
if (!foundTool) {
return response;
}
try {
// If we found a tool call, we need to extract the tool call from the response
List jsonCalls = JsonSupport.extractJsonFromString(response.responseText);
if (jsonCalls.isEmpty()) {
logger.warn("Tool call detected but no tool call found in response: {}", response.responseText);
return response;
}
logger.debug("Found tool calls: {}", jsonCalls);
List toolCalls = new ArrayList<>(jsonCalls.size());
for (String jsonCall : jsonCalls) {
if (jsonCall.startsWith("[")) {
List toolCallList = JsonSupport.om.readValue(jsonCall, ToolCall.toolCallListTypeReference);
toolCalls.addAll(toolCallList);
} else {
ToolCall toolCall = JsonSupport.om.readValue(jsonCall, ToolCall.class);
toolCalls.add(toolCall);
}
}
// Remove duplicates
toolCalls = toolCalls.stream().sorted(Comparator.comparing(ToolCall::getName)).distinct().collect(Collectors.toList());
for (int i = 0; i < toolCalls.size(); i++) {
// Standard is to use 9 digit ids
toolCalls.get(i).setId(String.format("%09d", i));
}
return response.copyWithToolCalls(toolCalls);
} catch (JsonProcessingException e) {
logger.error("Failed to parse tool call from response: {}", response.responseText, e);
}
return response;
}
}