All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.TKnudsen.ComplexDataObject.model.transformations.dimensionalityReduction.DimensionalityReduction Maven / Gradle / Ivy

package com.github.TKnudsen.ComplexDataObject.model.transformations.dimensionalityReduction;

import java.util.Map;

import com.github.TKnudsen.ComplexDataObject.data.features.AbstractFeatureVector;
import com.github.TKnudsen.ComplexDataObject.data.features.Feature;
import com.github.TKnudsen.ComplexDataObject.data.features.numericalData.NumericalFeatureVector;
import com.github.TKnudsen.ComplexDataObject.model.distanceMeasure.IDistanceMeasure;
import com.github.TKnudsen.ComplexDataObject.model.processors.complexDataObject.DataTransformationCategory;

/**
 * 

* Title: DimensionalityReduction *

* *

* Description: baseline for dimensionality reduction algorithms. Maintains * generalizable data structures. * *

* Copyright: Copyright (c) 2012-2017 Juergen Bernard, * https://github.com/TKnudsen/ComplexDataObject *

* * @author Juergen Bernard * @version 1.02 */ public abstract class DimensionalityReduction>> implements IDimensionalityReduction { /** * used by many routines to calculate pairwise distances */ protected IDistanceMeasure distanceMeasure; /** * the dimensionality of the manifold to be learned */ protected int outputDimensionality; protected Map mapping; @Override public DataTransformationCategory getDataTransformationCategory() { return DataTransformationCategory.DIMENSION_REDUCTION; } @Override public Map getMapping() { return mapping; } @Override public int getOutputDimensionality() { return outputDimensionality; } public void setOutputDimensionality(int outputDimensionality) { this.outputDimensionality = outputDimensionality; this.mapping = null; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy