
com.github.tommyettinger.gand.smoothing.Bresenham2DRaycastCollisionDetector Maven / Gradle / Ivy
/*******************************************************************************
* Copyright 2014 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package com.github.tommyettinger.gand.smoothing;
import com.github.tommyettinger.crux.Point2;
import com.github.tommyettinger.crux.PointPair;
import com.github.tommyettinger.gand.utils.IntIntPredicate;
/** A raycast collision detector used for path smoothing in 2D, with cells considered passable if a predicate returns
* true. This treats diagonally-connected passable cells as connected. It uses Bresenham's line algorithm.
* See Wikipedia for more info.
*
* This is typically used by passing in a lambda that either looks up a value in a 2D array (and should check the bounds
* of the array against the indices given), or sets a {@link com.github.tommyettinger.gand.points.PointI2} with the int
* parameters and looks that up in a map or set. The former might look like:
* {@code (x, y) -> x >= 0 && x < booleanWorld.length && y >= 0 && y < booleanWorld[x].length && booleanWorld[x][y]} .
*
* @param typically {@link com.github.tommyettinger.gand.points.PointI2} or {@link com.github.tommyettinger.gand.points.PointF2}
* @author davebaol */
public class Bresenham2DRaycastCollisionDetector
> implements RaycastCollisionDetector
{
private final IntIntPredicate predicate;
/**
* Creates a Bresenham2DRaycastCollisionDetector that uses the given {@code predicate} to determine if an x,y cell
* is passable.
*
* {@code predicate} is typically a lambda that either looks up a value in a 2D array (and should check the bounds
* of the array against the indices given), or sets a {@link com.github.tommyettinger.gand.points.PointI2} with the
* int parameters and looks that up in a map or set. The former might look like:
* {@code (x, y) -> x >= 0 && x < booleanWorld.length && y >= 0 && y < booleanWorld[x].length && booleanWorld[x][y]} .
* @param predicate should bounds-check an x,y point and return true if it is considered passable
*/
public Bresenham2DRaycastCollisionDetector(final IntIntPredicate predicate) {
this.predicate = predicate;
}
/**
* Draws a line using Bresenham's line algorithm to see if all cells in the line are passable; if any cell was not
* passable, then this returns true (meaning there is a collision). If the point type this uses allows
* floating-point values for coordinates, then this rounds coordinates to their nearest integers.
*
* See Wikipedia for more info.
*
* @param ray the ray to cast; will not be modified
* @return true if any cell in the line is blocked, as per the given predicate
*/
@Override
public boolean collides (final PointPair
ray) {
return collides(ray, predicate);
}
/**
* Draws a line using Bresenham's line algorithm to see if all cells in the line are passable; if any cell was not
* passable, then this returns true (meaning there is a collision). If the point type this uses allows
* floating-point values for coordinates, then this rounds coordinates to their nearest integers.
*
* See Wikipedia for more info.
*
* @param ray the ray to cast; will not be modified
* @param predicate should bounds-check an x,y point and return true if it is considered passable
* @return true if any cell in the line is blocked, as per the given predicate
*/
public static
> boolean collides (final PointPair
ray, final IntIntPredicate predicate) {
int x0 = (int)(ray.a.x() + 0.5f);
int y0 = (int)(ray.a.y() + 0.5f);
int x1 = (int)(ray.b.x() + 0.5f);
int y1 = (int)(ray.b.y() + 0.5f);
int tmp;
boolean steep = Math.abs(y1 - y0) > Math.abs(x1 - x0);
if (steep) {
// Swap x0 and y0
tmp = x0;
x0 = y0;
y0 = tmp;
// Swap x1 and y1
tmp = x1;
x1 = y1;
y1 = tmp;
}
if (x0 > x1) {
// Swap x0 and x1
tmp = x0;
x0 = x1;
x1 = tmp;
// Swap y0 and y1
tmp = y0;
y0 = y1;
y1 = tmp;
}
int deltax = x1 - x0;
int deltay = Math.abs(y1 - y0);
int error = 0;
int y = y0;
int ystep = (y0 < y1 ? 1 : -1);
for (int x = x0; x <= x1; x++) {
if(steep) {
if(!predicate.test(y, x)) return true;
} else {
if(!predicate.test(x, y)) return true;
}
error += deltay;
if (error + error >= deltax) {
y += ystep;
error -= deltax;
}
}
return false;
}
}