![JAR search and dependency download from the Maven repository](/logo.png)
com.github.tommyettinger.ds.EnumMap Maven / Gradle / Ivy
Show all versions of jdkgdxds Show documentation
/*
* Copyright (c) 2022-2025 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.tommyettinger.ds;
import com.github.tommyettinger.ds.support.util.Appender;
import com.github.tommyettinger.function.ObjObjToObjBiFunction;
import org.checkerframework.checker.nullness.qual.NonNull;
import org.checkerframework.checker.nullness.qual.Nullable;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Set;
import static com.github.tommyettinger.ds.Utilities.neverIdentical;
/**
* An unordered map where the keys are {@code Enum}s and values are objects. Null keys are not allowed; null values are permitted.
* Unlike {@link java.util.EnumMap}, this does not require a Class at construction time, which can be useful for serialization
* purposes. No allocation is done unless this is changing its table size and/or key universe.
*
* This class never actually hashes keys in its primary operations (get(), put(), remove(), containsKey(), etc.), since it can
* rely on keys having an Enum type, and so having {@link Enum#ordinal()} available. The ordinal allows constant-time access
* to a guaranteed-unique {@code int} that will always be non-negative and less than the size of the key universe. The table of
* possible values always starts sized to fit exactly as many values as there are keys in the key universe.
*
* The key universe is an important concept here; it is simply an array of all possible Enum values the EnumMap can use as keys, in
* the specific order they are declared. You almost always get a key universe by calling {@code MyEnum.values()}, but you
* can also use {@link Class#getEnumConstants()} for an Enum class. You can and generally should reuse key universes in order to
* avoid allocations and/or save memory; the constructor {@link #EnumMap(Enum[])} (with no values given) creates an empty EnumMap with
* a given key universe. If you need to use the zero-argument constructor, you can, and the key universe will be obtained from the
* first key placed into the EnumMap. You can also set the key universe with {@link #clearToUniverse(Enum[])}, in the process of
* clearing the map.
*
* This class tries to be as compatible as possible with {@link java.util.EnumMap}, though this expands on that where possible.
*
* @author Nathan Sweet (Keys, Values, Entries, and MapIterator, as well as general structure)
* @author Tommy Ettinger (Enum-related adaptation)
*/
public class EnumMap implements Map, V>, Iterable, V>> {
protected int size;
protected Enum> @Nullable [] universe = null;
protected @Nullable Object @Nullable[] valueTable = null;
@Nullable protected transient Entries entries1;
@Nullable protected transient Entries entries2;
@Nullable protected transient Values values1;
@Nullable protected transient Values values2;
@Nullable protected transient Keys keys1;
@Nullable protected transient Keys keys2;
/**
* Returned by {@link #get(Object)} when no value exists for the given key, as well as some other methods to indicate that
* no value in the Map could be returned. Defaults to {@code null}.
*/
@Nullable public V defaultValue = null;
/**
* Empty constructor; using this will postpone creating the key universe and allocating the value table until {@link #put} is
* first called (potentially indirectly). You can also use {@link #clearToUniverse} to set the key universe and value table.
*/
public EnumMap () {
}
/**
* Initializes this map so that it has exactly enough capacity as needed to contain each Enum constant defined in
* {@code universe}, assuming universe stores every possible constant in one Enum type. This map will start empty.
* You almost always obtain universe from calling {@code values()} on an Enum type, and you can share one
* reference to one Enum array across many EnumMap instances if you don't modify the shared array. Sharing the same
* universe helps save some memory if you have (very) many EnumMap instances.
* @param universe almost always, the result of calling {@code values()} on an Enum type; used directly, not copied
*/
public EnumMap (Enum> @Nullable [] universe) {
super();
if(universe == null) return;
this.universe = universe;
valueTable = new Object[universe.length];
}
/**
* Initializes this map so that it has exactly enough capacity as needed to contain each Enum constant defined by the
* Class {@code universeClass}, assuming universeClass is non-null. This simply calls {@link #EnumMap(Enum[])}
* for convenience. Note that this constructor allocates a new array of Enum constants each time it is called, where
* if you use {@link #EnumMap(Enum[])}, you can reuse an unmodified array to reduce allocations.
* @param universeClass the Class of an Enum type that defines the universe of valid Enum items this can hold
*/
public EnumMap (@Nullable Class extends Enum>> universeClass) {
this(universeClass == null ? null : universeClass.getEnumConstants());
}
/**
* Creates a new map identical to the specified EnumMap. This will share a key universe with the given EnumMap, if non-null.
*
* @param map an EnumMap to copy
*/
public EnumMap (EnumMap extends V> map) {
universe = map.universe;
if(map.valueTable != null)
valueTable = Arrays.copyOf(map.valueTable, map.valueTable.length);
size = map.size;
defaultValue = map.defaultValue;
}
/**
* Creates a new map identical to the specified map.
*
* @param map a Map to copy; EnumMap or its subclasses will be faster
*/
public EnumMap (Map extends Enum>, ? extends V> map) {
this();
putAll(map);
}
/**
* Given two side-by-side arrays, one of Enum keys, one of V values, this constructs a map and inserts each pair of key and
* value into it. If keys and values have different lengths, this only uses the length of the smaller array.
*
* @param keys an array of Enum keys
* @param values an array of V values
*/
public EnumMap (Enum>[] keys, V[] values) {
this();
putAll(keys, values);
}
/**
* Given two side-by-side collections, one of Enum keys, one of V values, this constructs a map and inserts each pair of key
* and value into it. If keys and values have different lengths, this only uses the length of the smaller collection.
*
* @param keys a Collection of Enum keys
* @param values a Collection of V values
*/
public EnumMap (Collection extends Enum>> keys, Collection extends V> values) {
this();
putAll(keys, values);
}
/**
* If the given Object is {@code null}, this replaces it with a placeholder value ({@link Utilities#neverIdentical});
* otherwise, it returns the given Object as-is.
* @param o any Object; will be returned as-is unless it is null
* @return the given Object or {@link Utilities#neverIdentical}
*/
protected Object hold(@Nullable Object o){
return o == null ? neverIdentical : o;
}
/**
* If the given Object is {@link Utilities#neverIdentical}, this "releases its hold" on that placeholder value and returns
* null; otherwise, it returns the given Object (cast to V if non-null).
* @param o any Object, but should be the placeholder {@link Utilities#neverIdentical} or a V instance
* @return the V passed in, or null if it is the placeholder
*/
@SuppressWarnings("unchecked")
@Nullable
protected V release(@Nullable Object o) {
if(o == neverIdentical || o == null)
return null;
return (V) o;
}
/**
* Returns the old value associated with the specified key, or this map's {@link #defaultValue} if there was no prior value.
* If this EnumMap does not yet have a key universe and/or value table, this gets the key universe from {@code key} and uses it
* from now on for this EnumMap.
*
* @param key the Enum key to try to place into this EnumMap
* @param value the V value to associate with {@code key}
* @return the previous value associated with {@code key}, or {@link #getDefaultValue()} if the given key was not present
*/
@Override
@Nullable
public V put (Enum> key, @Nullable V value) {
if(key == null) throw new NullPointerException("Keys added to an EnumMap must not be null.");
if(universe == null) universe = key.getDeclaringClass().getEnumConstants();
if(valueTable == null) valueTable = new Object[universe.length];
int i = key.ordinal();
if(i >= valueTable.length || universe[i] != key)
throw new ClassCastException("Incompatible key for the EnumMap's universe.");
Object oldValue = valueTable[i];
valueTable[i] = hold(value);
if (oldValue != null) {
// Existing key was found.
return release(oldValue);
}
++size;
return defaultValue;
}
/**
* Acts like {@link #put(Enum, Object)}, but uses the specified {@code defaultValue} instead of
* {@link #getDefaultValue() the default value for this EnumMap}.
* @param key the Enum key to try to place into this EnumMap
* @param value the V value to associate with {@code key}
* @param defaultValue the V value to return if {@code key} was not already present
* @return the previous value associated with {@code key}, or the given {@code defaultValue} if the given key was not present
*/
@Nullable
public V putOrDefault (Enum> key, @Nullable V value, @Nullable V defaultValue) {
if(key == null) throw new NullPointerException("Keys added to an EnumMap must not be null.");
if(universe == null) universe = key.getDeclaringClass().getEnumConstants();
if(valueTable == null) valueTable = new Object[universe.length];
int i = key.ordinal();
if(i >= valueTable.length || universe[i] != key)
throw new ClassCastException("Incompatible key for the EnumMap's universe.");
Object oldValue = valueTable[i];
valueTable[i] = hold(value);
if (oldValue != null) {
// Existing key was found.
return release(oldValue);
}
++size;
return defaultValue;
}
/**
* Puts every key-value pair in the given map into this, with the values from the given map
* overwriting the previous values if two keys are identical. If this EnumMap doesn't yet have
* a key universe, it will now share a key universe with the given {@code map}. Even if the
* given EnumMap is empty, it can still be used to obtain a key universe for this EnumMap
* (assuming it has a key universe).
*
* @param map a map with compatible key and value types; will not be modified
*/
public void putAll (@NonNull EnumMap extends V> map) {
if(map.universe == null) return;
if(universe == null) universe = map.universe;
if(valueTable == null) valueTable = new Object[universe.length];
if(map.size == 0) return;
final int n = map.valueTable.length;
if(this.valueTable.length != n) return;
Object[] valueTable = map.valueTable;
Object value;
for (int i = 0; i < n; i++) {
if(universe[i] != map.universe[i])
throw new ClassCastException("Incompatible key for the EnumMap's universe.");
value = valueTable[i];
if (value != null) {
if(this.valueTable[i] == null) ++size;
this.valueTable[i] = value;
}
}
}
/**
* Given two side-by-side arrays, one of keys, one of values, this inserts each pair of key and value into this map with put().
* Delegates to {@link #putAll(Enum[], int, Object[], int, int)}.
*
* @param keys an array of keys
* @param values an array of values
*/
public void putAll (Enum>[] keys, V[] values) {
putAll(keys, 0, values, 0, Math.min(keys.length, values.length));
}
/**
* Given two side-by-side arrays, one of keys, one of values, this inserts each pair of key and value into this map with put().
* Delegates to {@link #putAll(Enum[], int, Object[], int, int)}.
*
* @param keys an array of keys
* @param values an array of values
* @param length how many items from keys and values to insert, at-most
*/
public void putAll (Enum>[] keys, V[] values, int length) {
putAll(keys, 0, values, 0, Math.min(length, Math.min(keys.length, values.length)));
}
/**
* Given two side-by-side arrays, one of keys, one of values, this inserts each pair of key and value into this map with
* {@link #put(Enum, Object)}.
*
* @param keys an array of keys
* @param keyOffset the first index in keys to insert
* @param values an array of values
* @param valueOffset the first index in values to insert
* @param length how many items from keys and values to insert, at-most
*/
public void putAll (Enum>[] keys, int keyOffset, V[] values, int valueOffset, int length) {
length = Math.min(length, Math.min(keys.length - keyOffset, values.length - valueOffset));
Enum> key;
for (int k = keyOffset, v = valueOffset, i = 0, n = length; i < n; i++, k++, v++) {
key = keys[k];
if (key != null) {
put(key, values[v]);
}
}
}
/**
* Given two side-by-side collections, one of Enum keys, one of V values, this inserts each pair of key and
* value into this map with put().
*
* @param keys a Collection of Enum keys
* @param values a Collection of V values
*/
public void putAll (Collection extends Enum>> keys, Collection extends V> values) {
Enum> key;
Iterator extends Enum>> ki = keys.iterator();
Iterator extends V> vi = values.iterator();
while (ki.hasNext() && vi.hasNext()) {
key = ki.next();
if (key != null) {
put(key, vi.next());
}
}
}
/**
* Returns the value for the specified key, or {@link #defaultValue} if the key is not in the map.
* Note that {@link #defaultValue} is often null, which is also a valid value that can be assigned to a
* legitimate key. Checking that the result of this method is null does not guarantee that the
* {@code key} is not present.
*
* @param key a non-null Object that should almost always be a {@code K} (or an instance of a subclass of {@code K})
*/
@Override
@Nullable
public V get (Object key) {
if(size == 0 || !(key instanceof Enum>))
return defaultValue;
final Enum> e = (Enum>)key;
final int ord = e.ordinal();
if(ord >= universe.length || universe[ord] != e)
return defaultValue;
Object o = valueTable[ord];
return o == null ? defaultValue : release(o);
}
/**
* Returns the value for the specified key, or the given default value if the key is not in the map.
*/
@Override
@Nullable
public V getOrDefault (Object key, @Nullable V defaultValue) {
if(size == 0 || valueTable == null || !(key instanceof Enum>))
return defaultValue;
Enum> e = (Enum>)key;
Object o = valueTable[e.ordinal()];
return o == null ? defaultValue : release(o);
}
@Override
@Nullable
public V remove (Object key) {
if(size == 0 || !(key instanceof Enum>))
return defaultValue;
Enum> e = (Enum>)key;
Object o = valueTable[e.ordinal()];
valueTable[e.ordinal()] = null;
if(o == null) return defaultValue;
--size;
return release(o);
}
/**
* Copies all the mappings from the specified map to this map
* (optional operation). The effect of this call is equivalent to that
* of calling {@link #put(Enum, Object) put(k, v)} on this map once
* for each mapping from key {@code k} to value {@code v} in the
* specified map. The behavior of this operation is undefined if the
* specified map is modified while the operation is in progress.
*
* Note that {@link #putAll(EnumMap)} is more specific and can be
* more efficient by using the internal details of this class.
*
* @param m mappings to be stored in this map
* @throws UnsupportedOperationException if the {@code putAll} operation
* is not supported by this map
* @throws ClassCastException if the class of a key or value in the
* specified map prevents it from being stored in this map
* @throws NullPointerException if the specified map is null, or if
* this map does not permit null keys or values, and the
* specified map contains null keys or values
* @throws IllegalArgumentException if some property of a key or value in
* the specified map prevents it from being stored in this map
*/
@Override
public void putAll (Map extends Enum>, ? extends V> m) {
for (Map.Entry extends Enum>, ? extends V> kv : m.entrySet()) {put(kv.getKey(), kv.getValue());}
}
/**
* Returns true if the map has one or more items.
*/
public boolean notEmpty () {
return size != 0;
}
/**
* Returns the number of key-value mappings in this map. If the
* map contains more than {@code Integer.MAX_VALUE} elements, returns
* {@code Integer.MAX_VALUE}.
*
* @return the number of key-value mappings in this map
*/
@Override
public int size () {
return size;
}
/**
* Returns true if the map is empty.
*/
@Override
public boolean isEmpty () {
return size == 0;
}
/**
* Gets the default value, a {@code V} which is returned by {@link #get(Object)} if the key is not found.
* If not changed, the default value is null.
*
* @return the current default value
*/
@Nullable
public V getDefaultValue () {
return defaultValue;
}
/**
* Sets the default value, a {@code V} which is returned by {@link #get(Object)} if the key is not found.
* If not changed, the default value is null. Note that {@link #getOrDefault(Object, Object)} is also available,
* which allows specifying a "not-found" value per-call.
*
* @param defaultValue may be any V object or null; should usually be one that doesn't occur as a typical value
*/
public void setDefaultValue (@Nullable V defaultValue) {
this.defaultValue = defaultValue;
}
/**
* Removes all the elements from this map.
* The map will be empty after this call returns.
* This does not change the universe of possible Enum items this can hold.
*/
@Override
public void clear () {
size = 0;
if(valueTable != null)
Utilities.clear(valueTable);
}
/**
* Removes all the elements from this map and can reset the universe of possible Enum items this can hold.
* The map will be empty after this call returns.
* This changes the universe of possible Enum items this can hold to match {@code universe}.
* If {@code universe} is null, this resets this map to the state it would have after {@link #EnumMap()} was called.
* If the table this would need is the same size as or smaller than the current table (such as if {@code universe} is the same as
* the universe here), this will not allocate, but will still clear any items this holds and will set the universe to the given one.
* Otherwise, this allocates and uses a new table of a larger size, with nothing in it, and uses the given universe.
* This always uses {@code universe} directly, without copying.
*
* This can be useful to allow an EnumMap that was created with {@link #EnumMap()} to share a universe with other EnumMaps.
*
* @param universe the universe of possible Enum items this can hold; almost always produced by {@code values()} on an Enum
*/
public void clearToUniverse (Enum>@Nullable [] universe) {
size = 0;
if (universe == null) {
valueTable = null;
} else if(universe.length <= this.universe.length) {
if(valueTable != null)
Utilities.clear(valueTable);
} else {
valueTable = new Object[universe.length];
}
this.universe = universe;
}
/**
* Removes all the elements from this map and can reset the universe of possible Enum items this can hold.
* The map will be empty after this call returns.
* This changes the universe of possible Enum items this can hold to match the Enum constants in {@code universe}.
* If {@code universe} is null, this resets this map to the state it would have after {@link #EnumMap()} was called.
* If the table this would need is the same size as or smaller than the current table (such as if {@code universe} is the same as
* the universe here), this will not allocate, but will still clear any items this holds and will set the universe to the given one.
* Otherwise, this allocates and uses a new table of a larger size, with nothing in it, and uses the given universe.
* This calls {@link Class#getEnumConstants()} if universe is non-null, which allocates a new array.
*
* You may want to prefer calling {@link #clearToUniverse(Enum[])} (the overload that takes an array), because it can be used to
* share one universe array between many EnumMap instances. This overload, given a Class, has to call {@link Class#getEnumConstants()}
* and thus allocate a new array each time this is called.
*
* @param universe the Class of an Enum type that stores the universe of possible Enum items this can hold
*/
public void clearToUniverse (@Nullable Class extends Enum>> universe) {
size = 0;
if (universe == null) {
valueTable = null;
this.universe = null;
} else {
Enum>[] cons = universe.getEnumConstants();
if(this.universe != null && cons.length <= this.universe.length) {
if(valueTable != null)
Utilities.clear(valueTable);
} else {
valueTable = new Object[cons.length];
}
this.universe = cons;
}
}
/**
* Gets the current key universe; this is a technically-mutable array, but should never be modified.
* To set the universe on an existing EnumMap (with existing contents), you can use {@link #clearToUniverse(Enum[])}.
* If an EnumMap has not been initialized, just adding a key will set the key universe to match the given item.
* @return the current key universe
*/
public Enum> @Nullable[] getUniverse () {
return universe;
}
/**
* Reduces the size of the map to the specified size. If the map is already smaller than the specified
* size, no action is taken. This indiscriminately removes items from the backing array until the
* requested newSize is reached, or until the full backing array has had its elements removed.
*
* This tries to remove from the end of the iteration order, but because the iteration order is not
* guaranteed by an unordered map, this can remove essentially any item(s) from the map if it is larger
* than newSize.
*
* @param newSize the target size to try to reach by removing items, if smaller than the current size
*/
public void truncate (int newSize) {
@Nullable Object[] table = this.valueTable;
newSize = Math.max(0, newSize);
for (int i = table.length - 1; i >= 0 && size > newSize; i--) {
if (table[i] != null) {
table[i] = null;
--size;
}
}
}
/**
* Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may
* be an expensive operation.
*
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* {@link #equals(Object)}.
*/
public boolean containsValue (@Nullable Object value, boolean identity) {
if(this.valueTable == null) return false;
@Nullable Object @Nullable[] valueTable = this.valueTable;
Object held = hold(value);
if (identity) {
for (int i = valueTable.length - 1; i >= 0; i--) {if (valueTable[i] == held) {return true;}}
} else {
for (int i = valueTable.length - 1; i >= 0; i--) {if (held.equals(valueTable[i])) {return true;}}
}
return false;
}
@Override
public boolean containsKey (Object key) {
if(size == 0 || universe == null || !(key instanceof Enum>))
return false;
final Enum> e = (Enum>)key;
final int ord = e.ordinal();
return ord < universe.length && universe[ord] == e && valueTable[ord] != null;
}
/**
* Returns {@code true} if this map maps one or more keys to the
* specified value. More formally, returns {@code true} if and only if
* this map contains at least one mapping to a value {@code v} such that
* {@code (value==null ? v==null : value.equals(v))}. This operation
* will probably require time linear in the map size for most
* implementations of the {@code Map} interface.
*
* @param value value whose presence in this map is to be tested
* @return {@code true} if this map maps one or more keys to the
* specified value
* @throws ClassCastException if the value is of an inappropriate type for
* this map
* (optional)
* @throws NullPointerException if the specified value is null and this
* map does not permit null values
* (optional)
*/
@Override
public boolean containsValue (Object value) {
return containsValue(value, false);
}
/**
* Returns the key for the specified value, or null if it is not in the map. Note this traverses the entire map and compares
* every value, which may be an expensive operation.
*
* @param identity If true, uses == to compare the specified value with values in the map. If false, uses
* {@link #equals(Object)}.
* @return the corresponding Enum if the value was found, or null otherwise
*/
@Nullable
public Enum> findKey (@Nullable Object value, boolean identity) {
if(this.universe == null || this.valueTable == null) return null;
@Nullable Object[] valueTable = this.valueTable;
Object held = hold(value);
if (identity) {
for (int i = valueTable.length - 1; i >= 0; i--) {if (valueTable[i] == held) {return universe[i];}}
} else {
for (int i = valueTable.length - 1; i >= 0; i--) {if (held.equals(valueTable[i])) {return universe[i];}}
}
return null;
}
@Override
public int hashCode () {
int h = size;
if(this.universe != null && this.valueTable != null) {
Enum>[] universe = this.universe;
@Nullable Object[] valueTable = this.valueTable;
for (int i = 0, n = universe.length; i < n; i++) {
Enum> key = universe[i];
h ^= key.hashCode();
V value = release(valueTable[i]);
if (value != null) {
h ^= value.hashCode();
}
}
}
return h;
}
@SuppressWarnings({"rawtypes", "unchecked"})
@Override
public boolean equals (Object obj) {
if (obj == this) {return true;}
if (!(obj instanceof Map)) {return false;}
Map other = (Map)obj;
if (other.size() != size) {return false;}
Enum> @Nullable[] universe = this.universe;
@Nullable Object @Nullable[] valueTable = this.valueTable;
if(universe == null || valueTable == null || size == 0) return other.isEmpty();
try {
for (int i = 0, n = universe.length; i < n; i++) {
@Nullable Object rawValue = valueTable[i];
if (rawValue != null) {
V value = release(rawValue);
if (value == null) {
if (other.getOrDefault(universe[i], neverIdentical) != null) {return false;}
} else {
if (!value.equals(other.get(universe[i]))) {return false;}
}
}
}
}catch (ClassCastException | NullPointerException unused) {
return false;
}
return true;
}
/**
* Uses == for comparison of each value.
*/
public boolean equalsIdentity (@Nullable Object obj) {
if (obj == this) {return true;}
if (!(obj instanceof EnumMap)) {return false;}
EnumMap other = (EnumMap)obj;
if (other.size != size) {return false;}
Enum>[] universe = this.universe;
Object[] valueTable = this.valueTable;
for (int i = 0, n = universe.length; i < n; i++) {
Enum> key = universe[i];
if (key != null && release(valueTable[i]) != other.getOrDefault(key, neverIdentical)) {return false;}
}
return true;
}
@Override
public String toString () {
return toString(", ", true);
}
/**
* Delegates to {@link #toString(String, boolean)} with the given entrySeparator and without braces.
* This is different from {@link #toString()}, which includes braces by default.
*
* @param entrySeparator how to separate entries, such as {@code ", "}
* @return a new String representing this map
*/
public String toString (String entrySeparator) {
return toString(entrySeparator, false);
}
public String toString (String entrySeparator, boolean braces) {
return appendTo(new StringBuilder(32), entrySeparator, braces).toString();
}
/**
* Makes a String from the contents of this EnumMap, but uses the given {@link Appender} and
* {@link Appender} to convert each key and each value to a customizable representation and append them
* to a temporary StringBuilder. To use
* the default String representation, you can use {@code StringBuilder::append} as an appender.
*
* @param entrySeparator how to separate entries, such as {@code ", "}
* @param keyValueSeparator how to separate each key from its value, such as {@code "="} or {@code ":"}
* @param braces true to wrap the output in curly braces, or false to omit them
* @param keyAppender a function that takes a StringBuilder and an Enum, and returns the modified StringBuilder
* @param valueAppender a function that takes a StringBuilder and a V, and returns the modified StringBuilder
* @return a new String representing this map
*/
public String toString (String entrySeparator, String keyValueSeparator, boolean braces,
Appender> keyAppender, Appender valueAppender){
return appendTo(new StringBuilder(), entrySeparator, keyValueSeparator, braces, keyAppender, valueAppender).toString();
}
public StringBuilder appendTo (StringBuilder sb, String entrySeparator, boolean braces) {
return appendTo(sb, entrySeparator, "=", braces, (builder, e) -> builder.append(e.name()), StringBuilder::append);
}
/**
* Appends to a StringBuilder from the contents of this EnumMap, but uses the given {@link Appender} and
* {@link Appender} to convert each key and each value to a customizable representation and append them
* to a StringBuilder. To use
* the default String representation, you can use {@code StringBuilder::append} as an appender.
*
* @param sb a StringBuilder that this can append to
* @param entrySeparator how to separate entries, such as {@code ", "}
* @param keyValueSeparator how to separate each key from its value, such as {@code "="} or {@code ":"}
* @param braces true to wrap the output in curly braces, or false to omit them
* @param keyAppender a function that takes a StringBuilder and an Enum, and returns the modified StringBuilder
* @param valueAppender a function that takes a StringBuilder and a V, and returns the modified StringBuilder
* @return {@code sb}, with the appended keys and values of this map
*/
public StringBuilder appendTo (StringBuilder sb, String entrySeparator, String keyValueSeparator, boolean braces,
Appender> keyAppender, Appender valueAppender) {
if (size == 0 || this.universe == null || this.valueTable == null) {
return braces ? sb.append("{}") : sb;
}
if (braces) {sb.append('{');}
Enum>[] universe = this.universe;
@Nullable Object[] valueTable = this.valueTable;
int i = -1;
final int len = universe.length;
while (++i < len) {
@Nullable Object v = valueTable[i];
if (v == null) {continue;}
keyAppender.apply(sb, universe[i]);
sb.append(keyValueSeparator);
V value = release(v);
if(value == this) sb.append("(this)");
else valueAppender.apply(sb, value);
break;
}
while (++i < len) {
@Nullable Object v = valueTable[i];
if (v == null) {continue;}
sb.append(entrySeparator);
keyAppender.apply(sb, universe[i]);
sb.append(keyValueSeparator);
V value = release(v);
if(value == this) sb.append("(this)");
else valueAppender.apply(sb, value);
}
if (braces) {sb.append('}');}
return sb;
}
@Override
@Nullable
public V replace (Enum> key, V value) {
int i = key.ordinal();
if (i < universe.length) {
V oldValue = release(valueTable[i]);
valueTable[i] = hold(value);
return oldValue;
}
return defaultValue;
}
/**
* Just like Map's merge() default method, but this doesn't use Java 8 APIs (so it should work on RoboVM), and this
* won't remove entries if the remappingFunction returns null (in that case, it will call {@code put(key, null)}).
* This also uses a functional interface from Funderby instead of the JDK, for RoboVM support.
* @param key key with which the resulting value is to be associated
* @param value the value to be merged with the existing value
* associated with the key or, if no existing value
* is associated with the key, to be associated with the key
* @param remappingFunction given a V from this and the V {@code value}, this should return what V to use
* @return the value now associated with key
*/
@Nullable
public V combine (Enum> key, V value, ObjObjToObjBiFunction super V, ? super V, ? extends V> remappingFunction) {
int i = key.ordinal();
V next = (valueTable[i] == null) ? value : remappingFunction.apply(release(valueTable[i]), value);
put(key, next);
return next;
}
/**
* Simply calls {@link #combine(Enum, Object, ObjObjToObjBiFunction)} on this map using every
* key-value pair in {@code other}. If {@code other} isn't empty, calling this will probably modify
* this map, though this depends on the {@code remappingFunction}.
* @param other a non-null Map (or subclass) with compatible key and value types
* @param remappingFunction given a V value from this and a value from other, this should return what V to use
*/
public void combine (Map extends Enum>, ? extends V> other, ObjObjToObjBiFunction super V, ? super V, ? extends V> remappingFunction) {
for (Map.Entry extends Enum>, ? extends V> e : other.entrySet()) {
combine(e.getKey(), e.getValue(), remappingFunction);
}
}
/**
* Reuses the iterator of the reused {@link Entries} produced by {@link #entrySet()};
* does not permit nested iteration. Iterate over {@link Entries#Entries(EnumMap)} if you
* need nested or multithreaded iteration. You can remove an Entry from this EnumMap
* using this Iterator.
*
* @return an {@link Iterator} over {@link Map.Entry} key-value pairs; remove is supported.
*/
@Override
public @NonNull MapIterator, V>> iterator () {
return entrySet().iterator();
}
/**
* Returns a {@link Set} view of the keys contained in this map.
* The set is backed by the map, so changes to the map are
* reflected in the set, and vice versa. If the map is modified
* while an iteration over the set is in progress (except through
* the iterator's own {@code remove} operation), the results of
* the iteration are undefined. The set supports element removal,
* which removes the corresponding mapping from the map, via the
* {@code Iterator.remove}, {@code Set.remove},
* {@code removeAll}, {@code retainAll}, and {@code clear}
* operations. It does not support the {@code add} or {@code addAll}
* operations.
*
* Note that the same Collection instance is returned each time this
* method is called. Use the {@link Keys} constructor for nested or
* multithreaded iteration.
*
* @return a set view of the keys contained in this map
*/
@Override
public @NonNull Keys keySet () {
if (keys1 == null || keys2 == null) {
keys1 = new Keys(this);
keys2 = new Keys(this);
}
if (!keys1.iter.valid) {
keys1.iter.reset();
keys1.iter.valid = true;
keys2.iter.valid = false;
return keys1;
}
keys2.iter.reset();
keys2.iter.valid = true;
keys1.iter.valid = false;
return keys2;
}
/**
* Returns a Collection of the values in the map. Remove is supported. Note that the same Collection instance is returned each
* time this method is called. Use the {@link Values} constructor for nested or multithreaded iteration.
*
* @return a {@link Collection} of V values
*/
@Override
public @NonNull Values values () {
if (values1 == null || values2 == null) {
values1 = new Values<>(this);
values2 = new Values<>(this);
}
if (!values1.iter.valid) {
values1.iter.reset();
values1.iter.valid = true;
values2.iter.valid = false;
return values1;
}
values2.iter.reset();
values2.iter.valid = true;
values1.iter.valid = false;
return values2;
}
/**
* Returns a Set of Map.Entry, containing the entries in the map. Remove is supported by the Set's iterator.
* Note that the same iterator instance is returned each time this method is called.
* Use the {@link Entries} constructor for nested or multithreaded iteration.
*
* @return a {@link Set} of {@link Map.Entry} key-value pairs
*/
@Override
public @NonNull Entries entrySet () {
if (entries1 == null || entries2 == null) {
entries1 = new Entries<>(this);
entries2 = new Entries<>(this);
}
if (!entries1.iter.valid) {
entries1.iter.reset();
entries1.iter.valid = true;
entries2.iter.valid = false;
return entries1;
}
entries2.iter.reset();
entries2.iter.valid = true;
entries1.iter.valid = false;
return entries2;
}
public static class Entry implements Map.Entry, V> {
@Nullable public Enum> key;
@Nullable public V value;
public Entry () {
}
public Entry (@Nullable Enum> key, @Nullable V value) {
this.key = key;
this.value = value;
}
public Entry (Map.Entry extends Enum>, ? extends V> entry) {
key = entry.getKey();
value = entry.getValue();
}
@Override
@Nullable
public String toString () {
return key + "=" + value;
}
/**
* Returns the key corresponding to this entry.
*
* @return the key corresponding to this entry
* @throws IllegalStateException implementations may, but are not
* required to, throw this exception if the entry has been
* removed from the backing map.
*/
@Override
public Enum> getKey () {
Objects.requireNonNull(key);
return key;
}
/**
* Returns the value corresponding to this entry. If the mapping
* has been removed from the backing map (by the iterator's
* {@code remove} operation), the results of this call are undefined.
*
* @return the value corresponding to this entry
* @throws IllegalStateException implementations may, but are not
* required to, throw this exception if the entry has been
* removed from the backing map.
*/
@Override
@Nullable
public V getValue () {
return value;
}
/**
* Sets the value of this Entry, but does not write through to the containing EnumMap.
* @param value the new V value to use
* @return the old value this held, before modification
*/
@Override
@Nullable
public V setValue (V value) {
V old = this.value;
this.value = value;
return old;
}
@Override
public boolean equals (@Nullable Object o) {
if (this == o) {return true;}
if (!(o instanceof Map.Entry)) {return false;}
Map.Entry entry = (Map.Entry)o;
if (!Objects.equals(key, entry.getKey())) {return false;}
return Objects.equals(value, entry.getValue());
}
@Override
public int hashCode () {
return (key != null ? key.hashCode() : 0) ^ (value != null ? value.hashCode() : 0);
}
}
public static abstract class MapIterator implements Iterable, Iterator {
public boolean hasNext;
protected final EnumMap extends V> map;
protected int nextIndex, currentIndex;
public boolean valid = true;
public MapIterator (EnumMap extends V> map) {
this.map = map;
reset();
}
public void reset () {
currentIndex = -1;
nextIndex = -1;
findNextIndex();
}
protected void findNextIndex () {
Object[] valueTable = map.valueTable;
if(valueTable != null) {
for (int n = map.universe.length; ++nextIndex < n; ) {
if (valueTable[nextIndex] != null) {
hasNext = true;
return;
}
}
}
hasNext = false;
}
@Override
public void remove () {
int i = currentIndex;
if (i < 0) {throw new IllegalStateException("next must be called before remove.");}
Object[] valueTable = map.valueTable;
if(valueTable == null) return;
// This condition can happen if the map had this the current item removed without using this method.
if(valueTable[i] != null)
map.size--;
valueTable[i] = null;
currentIndex = -1;
}
}
public static class Entries extends AbstractSet, V>> implements EnhancedCollection, V>> {
protected Entry entry = new Entry<>();
protected MapIterator, V>> iter;
public Entries (EnumMap map) {
iter = new MapIterator, V>>(map) {
@Override
public @NonNull MapIterator, V>> iterator () {
return this;
}
/**
* Note: the same entry instance is returned each time this method is called.
*
* @return a reused Entry that will have its key and value set to the next pair
*/
@Override
public Map.Entry, V> next () {
if (!hasNext) {throw new NoSuchElementException();}
if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");}
Enum>[] universe = map.universe;
entry.key = universe[nextIndex];
entry.value = map.release(map.valueTable[nextIndex]);
currentIndex = nextIndex;
findNextIndex();
return entry;
}
@Override
public boolean hasNext () {
if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");}
return hasNext;
}
};
}
@Override
public boolean contains (Object o) {
if(o instanceof Map.Entry) {
Map.Entry ent = ((Map.Entry)o);
if(ent.getKey() instanceof Enum>){
Enum> e = (Enum>)ent.getKey();
int ord = e.ordinal();
return (ord < iter.map.universe.length && iter.map.universe[ord] == e
&& iter.map.valueTable[ord] != null && iter.map.valueTable[ord].equals(iter.map.hold(ent.getValue())));
}
}
return false;
}
@Override
public boolean remove (Object o) {
if(o instanceof Map.Entry) {
Map.Entry ent = ((Map.Entry)o);
if(ent.getKey() instanceof Enum>){
Enum> e = (Enum>)ent.getKey();
int ord = e.ordinal();
if (ord < iter.map.universe.length && iter.map.universe[ord] == e
&& iter.map.valueTable[ord] != null && iter.map.valueTable[ord].equals(iter.map.hold(ent.getValue()))){
iter.map.remove(e);
return true;
}
}
}
return false;
}
/**
* Removes from this set all of its elements that are contained in the
* specified collection (optional operation). If the specified
* collection is also a set, this operation effectively modifies this
* set so that its value is the asymmetric set difference of
* the two sets.
*
* @param c collection containing elements to be removed from this set
* @return {@code true} if this set changed as a result of the call
*/
@Override
public boolean removeAll (Collection> c) {
iter.reset();
boolean res = false;
for(Object o : c) {
if (remove(o)) {
iter.reset();
res = true;
}
}
return res;
}
/**
* {@inheritDoc}
*
* @param c
* @implSpec This implementation iterates over this collection, checking each
* element returned by the iterator in turn to see if it's contained
* in the specified collection. If it's not so contained, it's removed
* from this collection with the iterator's {@code remove} method.
*/
@Override
public boolean retainAll (Collection> c) {
Objects.requireNonNull(c);
iter.reset();
boolean modified = false;
while (iter.hasNext) {
Map.Entry, V> n = iter.next();
if (!c.contains(n)) {
iter.remove();
modified = true;
}
}
iter.reset();
return modified;
}
/**
* {@inheritDoc}
*
* @param c
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @implSpec This implementation iterates over the specified collection,
* checking each element returned by the iterator in turn to see
* if it's contained in this collection. If all elements are so
* contained {@code true} is returned, otherwise {@code false}.
* @see #contains(Object)
*/
@Override
public boolean containsAll (Collection> c) {
iter.reset();
return super.containsAll(c);
}
/**
* Returns an iterator over the elements contained in this collection.
*
* @return an iterator over the elements contained in this collection
*/
@Override
public @NonNull MapIterator, V>> iterator () {
return iter;
}
@Override
public int size () {
return iter.map.size;
}
@Override
public int hashCode () {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
iter.reset();
int hc = super.hashCode();
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return hc;
}
@Override
public boolean equals (Object other) {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
iter.reset();
boolean res = super.equals(other);
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return res;
}
@Override
public String toString () {
return toString(", ", true);
}
/**
* {@inheritDoc}
*/
@Override
public void clear () {
iter.map.clear();
iter.reset();
}
/**
* The iterator is reused by this data structure, and you can reset it
* back to the start of the iteration order using this.
*/
public void resetIterator () {
iter.reset();
}
/**
* {@inheritDoc}
*/
@Override
public Object @NonNull [] toArray () {
Object[] a = new Object[iter.map.size];
int i = 0;
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {
a[i++] = new Entry<>(iter.next());
}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return a;
}
/**
* {@inheritDoc}
*
* @param a
*/
@Override
public T @NonNull [] toArray (T[] a) {
if(a.length < iter.map.size) a = Arrays.copyOf(a, iter.map.size);
int i = 0;
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {
a[i++] = (T)new Entry<>(iter.next());
}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return a;
}
/**
* Returns a new {@link ObjectList} containing the remaining items.
* Does not change the position of this iterator.
*/
public ObjectList, V>> toList () {
ObjectList, V>> list = new ObjectList<>(iter.map.size);
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {list.add(new Entry<>(iter.next()));}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return list;
}
/**
* Append the remaining items that this can iterate through into the given Collection.
* Does not change the position of this iterator.
* @param coll any modifiable Collection; may have items appended into it
* @return the given collection
*/
public Collection, V>> appendInto(Collection, V>> coll) {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {coll.add(new Entry<>(iter.next()));}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return coll;
}
/**
* Append the remaining items that this can iterate through into the given Map.
* Does not change the position of this iterator. Note that a Map is not a Collection.
* @param coll any modifiable Map; may have items appended into it
* @return the given map
*/
public Map, V> appendInto(Map, V> coll) {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {
iter.next();
coll.put(entry.key, entry.value);
}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return coll;
}
}
public static class Values extends AbstractCollection implements EnhancedCollection {
protected MapIterator iter;
public Values (EnumMap map) {
iter = new MapIterator(map) {
@Override
public @NonNull MapIterator iterator () {
return this;
}
@Override
public boolean hasNext () {
if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");}
return hasNext;
}
@Override
public V next () {
if (!hasNext) {throw new NoSuchElementException();}
if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");}
V value = map.release(map.valueTable[nextIndex]);
currentIndex = nextIndex;
findNextIndex();
return value;
}
};
}
/**
* Returns an iterator over the elements contained in this collection.
*
* @return an iterator over the elements contained in this collection
*/
@Override
public @NonNull MapIterator iterator () {
return iter;
}
@Override
public boolean contains (Object o) {
return iter.map.containsValue(o);
}
/**
* {@inheritDoc}
*
* @param o
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @implSpec This implementation iterates over the collection looking for the
* specified element. If it finds the element, it removes the element
* from the collection using the iterator's remove method.
*/
@Override
public boolean remove (Object o) {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
iter.reset();
boolean res = super.remove(o);
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return res;
}
/**
* {@inheritDoc}
*
* @param c
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
@Override
public boolean removeAll (@NonNull Collection> c) {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
iter.reset();
boolean res = super.removeAll(c);
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return res;
}
@Override
public boolean retainAll (@NonNull Collection> c) {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
iter.reset();
boolean res = super.retainAll(c);
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return res;
}
/**
* {@inheritDoc}
*/
@Override
public void clear () {
iter.map.clear();
iter.reset();
}
@Override
public final boolean equals (Object o) {
if (this == o)
return true;
if (!(o instanceof Collection))
return false;
Collection> values = (Collection>)o;
if(size() != values.size()) return false;
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
iter.reset();
boolean res = true;
for (Object obj : values) {
if (!iter.hasNext) {
res = false;
break;
}
Object mine = iter.next();
if (!Objects.equals(mine, obj)) {
res = false;
break;
}
}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return res;
}
@Override
public int hashCode () {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
iter.reset();
int hc = 1;
for (V v : this)
hc += (v == null ? 0 : v.hashCode());
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return hc;
}
/**
* The iterator is reused by this data structure, and you can reset it
* back to the start of the iteration order using this.
*/
public void resetIterator () {
iter.reset();
}
@Override
public String toString () {
return toString(", ", true);
}
@Override
public int size () {
return iter.map.size;
}
/**
* {@inheritDoc}
*/
@Override
public Object @NonNull [] toArray () {
Object[] a = new Object[iter.map.size];
int i = 0;
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {
a[i++] = iter.next();
}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return a;
}
/**
* {@inheritDoc}
*
* @param a
*/
@Override
public T @NonNull [] toArray (T[] a) {
if(a.length < iter.map.size) a = Arrays.copyOf(a, iter.map.size);
int i = 0;
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {
a[i++] = (T)iter.next();
}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return a;
}
/**
* Returns a new {@link ObjectList} containing the remaining items.
* Does not change the position of this iterator.
*/
public ObjectList toList () {
ObjectList list = new ObjectList<>(iter.map.size);
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {list.add(iter.next());}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return list;
}
/**
* Append the remaining items that this can iterate through into the given Collection.
* Does not change the position of this iterator.
* @param coll any modifiable Collection; may have items appended into it
* @return the given collection
*/
public Collection appendInto(Collection coll) {
int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex;
boolean hn = iter.hasNext;
while (iter.hasNext) {coll.add(iter.next());}
iter.currentIndex = currentIdx;
iter.nextIndex = nextIdx;
iter.hasNext = hn;
return coll;
}
}
public static class Keys extends AbstractSet> implements EnhancedCollection> {
protected MapIterator, Enum>> iter;
public Keys (EnumMap> map) {
iter = new MapIterator