All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.tommyettinger.ds.IntObjectMap Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2022-2025 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.github.tommyettinger.ds;

import com.github.tommyettinger.digital.Base;
import com.github.tommyettinger.digital.BitConversion;
import com.github.tommyettinger.ds.support.util.Appender;
import com.github.tommyettinger.ds.support.util.IntAppender;
import com.github.tommyettinger.ds.support.util.IntIterator;
import com.github.tommyettinger.function.IntObjBiConsumer;
import com.github.tommyettinger.function.IntObjToObjBiFunction;

import com.github.tommyettinger.function.IntToObjFunction;
import com.github.tommyettinger.function.ObjObjToObjBiFunction;
import org.checkerframework.checker.nullness.qual.NonNull;
import org.checkerframework.checker.nullness.qual.Nullable;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.Set;

import static com.github.tommyettinger.ds.Utilities.neverIdentical;
import static com.github.tommyettinger.ds.Utilities.tableSize;

/**
 * An unordered map where the keys are unboxed ints and the values are objects. Null keys are not allowed. No allocation is
 * done except when growing the table size.
 * 

* This class performs fast contains and remove (typically O(1), worst case O(n) but that is rare in practice). Add may be * slightly slower, depending on hash collisions. Hashcodes are rehashed to reduce collisions and the need to resize. Load factors * greater than 0.91 greatly increase the chances to resize to the next higher POT size. *

* Unordered sets and maps are not designed to provide especially fast iteration. Iteration is faster with {@link Ordered} types like * ObjectOrderedSet and ObjectObjectOrderedMap. *

* You can customize most behavior of this map by extending it. {@link #place(int)} can be overridden to change how hashCodes * are calculated (which can be useful for types like {@link StringBuilder} that don't implement hashCode()), and * {@link #locateKey(int)} can be overridden to change how equality is calculated. *

* This implementation uses linear probing with the backward shift algorithm for removal. * It tries different hashes from a simple family, with the hash changing on resize. * Linear probing continues to work even when all hashCodes collide, just more slowly. * * @author Nathan Sweet * @author Tommy Ettinger */ public class IntObjectMap implements Iterable> { protected int size; protected int[] keyTable; protected @Nullable V[] valueTable; protected boolean hasZeroValue; @Nullable protected V zeroValue; /** * Between 0f (exclusive) and 1f (inclusive, if you're careful), this determines how full the backing tables * can get before this increases their size. Larger values use less memory but make the data structure slower. */ protected float loadFactor; /** * Precalculated value of {@code (int)(keyTable.length * loadFactor)}, used to determine when to resize. */ protected int threshold; /** * Used by {@link #place(int)} to bit shift the upper bits of an {@code int} into a usable range (>= 0 and <= * {@link #mask}). The shift can be negative, which is convenient to match the number of bits in mask: if mask is a 7-bit * number, a shift of -7 shifts the upper 7 bits into the lowest 7 positions. This class sets the shift > 32 and < 64, * which when used with an int will still move the upper bits of an int to the lower bits due to Java's implicit modulus on * shifts. *

* {@link #mask} can also be used to mask the low bits of a number, which may be faster for some hashcodes, if * {@link #place(int)} is overridden. */ protected int shift; /** * A bitmask used to confine hashcodes to the size of the table. Must be all 1 bits in its low positions, ie a power of two * minus 1. If {@link #place(int)} is overridden, this can be used instead of {@link #shift} to isolate usable bits of a * hash. */ protected int mask; @Nullable protected transient Entries entries1; @Nullable protected transient Entries entries2; @Nullable protected transient Values values1; @Nullable protected transient Values values2; @Nullable protected transient Keys keys1; @Nullable protected transient Keys keys2; @Nullable public V defaultValue = null; /** * Creates a new map with an initial capacity of 51 and a load factor of {@link Utilities#getDefaultLoadFactor()}. */ public IntObjectMap () { this(51, Utilities.getDefaultLoadFactor()); } /** * Creates a new map with the given starting capacity and a load factor of {@link Utilities#getDefaultLoadFactor()}. * * @param initialCapacity If not a power of two, it is increased to the next nearest power of two. */ public IntObjectMap (int initialCapacity) { this(initialCapacity, Utilities.getDefaultLoadFactor()); } /** * Creates a new map with the specified initial capacity and load factor. This map will hold initialCapacity items before * growing the backing table. * * @param initialCapacity If not a power of two, it is increased to the next nearest power of two. * @param loadFactor what fraction of the capacity can be filled before this has to resize; 0 < loadFactor <= 1 */ public IntObjectMap (int initialCapacity, float loadFactor) { if (loadFactor <= 0f || loadFactor > 1f) {throw new IllegalArgumentException("loadFactor must be > 0 and <= 1: " + loadFactor);} this.loadFactor = loadFactor; int tableSize = tableSize(initialCapacity, loadFactor); threshold = (int)(tableSize * loadFactor); mask = tableSize - 1; shift = BitConversion.countLeadingZeros(mask) + 32; keyTable = new int[tableSize]; valueTable = (V[])new Object[tableSize]; } /** * Creates a new map identical to the specified map. * This performs a shallow copy, so any references to values (as well as the default value) are shared with the old map. * * @param map the map to copy */ public IntObjectMap (IntObjectMap map) { this((int)(map.keyTable.length * map.loadFactor), map.loadFactor); System.arraycopy(map.keyTable, 0, keyTable, 0, map.keyTable.length); System.arraycopy(map.valueTable, 0, valueTable, 0, map.valueTable.length); size = map.size; defaultValue = map.defaultValue; zeroValue = map.zeroValue; hasZeroValue = map.hasZeroValue; } /** * Given two side-by-side arrays, one of keys, one of values, this constructs a map and inserts each pair of key and value into it. * If keys and values have different lengths, this only uses the length of the smaller array. * * @param keys an array of keys * @param values an array of values */ public IntObjectMap (int[] keys, V[] values) { this(Math.min(keys.length, values.length)); putAll(keys, values); } /** * Given two side-by-side collections, one of keys, one of values, this constructs a map and inserts each pair of key and value into it. * If keys and values have different lengths, this only uses the length of the smaller collection. * * @param keys a PrimitiveCollection of keys * @param values a PrimitiveCollection of values */ public IntObjectMap (PrimitiveCollection.OfInt keys, Collection values) { this(Math.min(keys.size(), values.size())); putAll(keys, values); } /** * Given two side-by-side collections, one of keys, one of values, this inserts each pair of key and value into this map with put(). * * @param keys a PrimitiveCollection of keys * @param values a PrimitiveCollection of values */ public void putAll (PrimitiveCollection.OfInt keys, Collection values) { int length = Math.min(keys.size(), values.size()); ensureCapacity(length); IntIterator ki = keys.iterator(); Iterator vi = values.iterator(); while (ki.hasNext() && vi.hasNext()) { put(ki.nextInt(), vi.next()); } } /** * Returns an index >= 0 and <= {@link #mask} for the specified {@code item}. * * @param item any int; it is usually mixed or masked here * @return an index between 0 and {@link #mask} (both inclusive) */ protected int place (int item) { return (item ^ (item << 9 | item >>> 23) ^ (item << 21 | item >>> 11)) & mask; } /** * Returns the index of the key if already present, else {@code ~index} for the next empty index. * While this can be overridden to compare for equality differently than {@code ==} between ints, that * isn't recommended because this has to treat zero keys differently, and it finds those with {@code ==}. */ protected int locateKey (int key) { int[] keyTable = this.keyTable; for (int i = place(key); ; i = i + 1 & mask) { int other = keyTable[i]; if (other == 0) { return ~i; // Empty space is available. } if (other == key) { return i; // Same key was found. } } } /** * Returns the old value associated with the specified key, or this map's {@link #defaultValue} if there was no prior value. */ @Nullable public V put (int key, @Nullable V value) { if (key == 0) { V oldValue = defaultValue; if (hasZeroValue) {oldValue = zeroValue;} else {size++;} hasZeroValue = true; zeroValue = value; return oldValue; } int i = locateKey(key); if (i >= 0) { // Existing key was found. V oldValue = valueTable[i]; valueTable[i] = value; return oldValue; } i = ~i; // Empty space was found. keyTable[i] = key; valueTable[i] = value; if (++size >= threshold) {resize(keyTable.length << 1);} return defaultValue; } /** * Returns the old value associated with the specified key, or the given {@code defaultValue} if there was no prior value. */ @Nullable public V putOrDefault (int key, @Nullable V value, @Nullable V defaultValue) { if (key == 0) { V oldValue = defaultValue; if (hasZeroValue) {oldValue = zeroValue;} else {size++;} hasZeroValue = true; zeroValue = value; return oldValue; } int i = locateKey(key); if (i >= 0) { // Existing key was found. V oldValue = valueTable[i]; valueTable[i] = value; return oldValue; } i = ~i; // Empty space was found. keyTable[i] = key; valueTable[i] = value; if (++size >= threshold) {resize(keyTable.length << 1);} return defaultValue; } /** * Puts every key-value pair in the given map into this, with the values from the given map * overwriting the previous values if two keys are identical. * * @param map a map with compatible key and value types; will not be modified */ public void putAll (IntObjectMap map) { ensureCapacity(map.size); if (map.hasZeroValue) { if (!hasZeroValue) {size++;} hasZeroValue = true; zeroValue = map.zeroValue; } int[] keyTable = map.keyTable; V[] valueTable = map.valueTable; int key; for (int i = 0, n = keyTable.length; i < n; i++) { key = keyTable[i]; if (key != 0) {put(key, valueTable[i]);} } } /** * Given two side-by-side arrays, one of keys, one of values, this inserts each pair of key and value into this map with put(). * * @param keys an array of keys * @param values an array of values */ public void putAll (int[] keys, V[] values) { putAll(keys, 0, values, 0, Math.min(keys.length, values.length)); } /** * Given two side-by-side arrays, one of keys, one of values, this inserts each pair of key and value into this map with put(). * * @param keys an array of keys * @param values an array of values * @param length how many items from keys and values to insert, at-most */ public void putAll (int[] keys, V[] values, int length) { putAll(keys, 0, values, 0, length); } /** * Given two side-by-side arrays, one of keys, one of values, this inserts each pair of key and value into this map with put(). * * @param keys an array of keys * @param keyOffset the first index in keys to insert * @param values an array of values * @param valueOffset the first index in values to insert * @param length how many items from keys and values to insert, at-most */ public void putAll (int[] keys, int keyOffset, V[] values, int valueOffset, int length) { length = Math.min(length, Math.min(keys.length - keyOffset, values.length - valueOffset)); ensureCapacity(length); for (int k = keyOffset, v = valueOffset, i = 0, n = length; i < n; i++, k++, v++) { put(keys[k], values[v]); } } /** * Skips checks for existing keys, doesn't increment size. */ protected void putResize (int key, @Nullable V value) { int[] keyTable = this.keyTable; for (int i = place(key); ; i = i + 1 & mask) { if (keyTable[i] == 0) { keyTable[i] = key; valueTable[i] = value; return; } } } /** * Returns the value for the specified key, or {@link #defaultValue} if the key is not in the map. * * @param key any {@code int} */ @Nullable public V get (int key) { if (key == 0) {return hasZeroValue ? zeroValue : defaultValue;} int[] keyTable = this.keyTable; for (int i = place(key); ; i = i + 1 & mask) { int other = keyTable[i]; if (other == 0) return defaultValue; if (other == key) return valueTable[i]; } } /** * Returns the value for the specified key, or the default value if the key is not in the map. */ @Nullable public V getOrDefault (int key, @Nullable V defaultValue) { if (key == 0) {return hasZeroValue ? zeroValue : defaultValue;} int[] keyTable = this.keyTable; for (int i = place(key); ; i = i + 1 & mask) { int other = keyTable[i]; if (other == 0) return defaultValue; if (other == key) return valueTable[i]; } } public @Nullable V remove (int key) { if (key == 0) { if (hasZeroValue) { hasZeroValue = false; --size; @Nullable V oldValue = zeroValue; zeroValue = null; return oldValue; } return defaultValue; } int pos = locateKey(key); if (pos < 0) return defaultValue; int[] keyTable = this.keyTable; @Nullable V[] valueTable = this.valueTable; @Nullable V oldValue = valueTable[pos]; int mask = this.mask, last, slot; size--; for (;;) { pos = ((last = pos) + 1) & mask; for (;;) { if ((key = keyTable[pos]) == 0) { keyTable[last] = 0; valueTable[last] = null; return oldValue; } slot = place(key); if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break; pos = (pos + 1) & mask; } keyTable[last] = key; valueTable[last] = valueTable[pos]; } } /** * Returns true if the map has one or more items. */ public boolean notEmpty () { return size != 0; } /** * Returns the number of key-value mappings in this map. If the * map contains more than {@code Integer.MAX_VALUE} elements, returns * {@code Integer.MAX_VALUE}. * * @return the number of key-value mappings in this map */ public int size () { return size; } /** * Returns true if the map is empty. */ public boolean isEmpty () { return size == 0; } /** * Gets the default value, a {@code V} which is returned by {@link #get(int)} if the key is not found. * If not changed, the default value is null. * * @return the current default value */ @Nullable public V getDefaultValue () { return defaultValue; } /** * Sets the default value, a {@code V} which is returned by {@link #get(int)} if the key is not found. * If not changed, the default value is null. Note that {@link #getOrDefault(int, Object)} is also available, * which allows specifying a "not-found" value per-call. * * @param defaultValue may be any V object or null; should usually be one that doesn't occur as a typical value */ public void setDefaultValue (@Nullable V defaultValue) { this.defaultValue = defaultValue; } /** * Reduces the size of the backing arrays to be the specified capacity / loadFactor, or less. If the capacity is already less, * nothing is done. If the map contains more items than the specified capacity, the next highest power of two capacity is used * instead. */ public void shrink (int maximumCapacity) { if (maximumCapacity < 0) {throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);} int tableSize = tableSize(Math.max(maximumCapacity, size), loadFactor); if (keyTable.length > tableSize) {resize(tableSize);} } /** * Clears the map and reduces the size of the backing arrays to be the specified capacity / loadFactor, if they are larger. */ public void clear (int maximumCapacity) { int tableSize = tableSize(maximumCapacity, loadFactor); if (keyTable.length <= tableSize) { clear(); return; } hasZeroValue = false; zeroValue = null; size = 0; resize(tableSize); } public void clear () { if (size == 0) {return;} hasZeroValue = false; zeroValue = null; size = 0; Arrays.fill(keyTable, 0); Utilities.clear(valueTable); } /** * Returns true if the specified value is in the map. Note this traverses the entire map and compares every value, which may * be an expensive operation. */ public boolean containsValue (@Nullable Object value) { if (hasZeroValue) { return Objects.equals(zeroValue, value); } V[] valueTable = this.valueTable; int[] keyTable = this.keyTable; for (int i = valueTable.length - 1; i >= 0; i--) { if (keyTable[i] != 0 && Objects.equals(valueTable[i], value)) {return true;} } return false; } public boolean containsKey (int key) { if (key == 0) {return hasZeroValue;} int[] keyTable = this.keyTable; for (int i = place(key); ; i = i + 1 & mask) { int other = keyTable[i]; if (other == 0) return false; if (other == key) return true; } } /** * Returns a key that maps to the specified value, or {@code defaultKey} if value is not in the map. * Note, this traverses the entire map and compares * every value, which may be an expensive operation. * @param value the value to search for * @param defaultKey the key to return when value cannot be found * @return a key that maps to value, if present, or defaultKey if value cannot be found */ public int findKey (@Nullable V value, int defaultKey) { if (hasZeroValue && Objects.equals(zeroValue, value)) {return 0;} V[] valueTable = this.valueTable; int[] keyTable = this.keyTable; for (int i = valueTable.length - 1; i >= 0; i--) { if (keyTable[i] != 0 && Objects.equals(valueTable[i], value)) {return keyTable[i];} } return defaultKey; } /** * Increases the size of the backing array to accommodate the specified number of additional items / loadFactor. Useful before * adding many items to avoid multiple backing array resizes. */ public void ensureCapacity (int additionalCapacity) { int tableSize = tableSize(size + additionalCapacity, loadFactor); if (keyTable.length < tableSize) {resize(tableSize);} } protected void resize (int newSize) { int oldCapacity = keyTable.length; threshold = (int)(newSize * loadFactor); mask = newSize - 1; shift = BitConversion.countLeadingZeros(mask) + 32; int[] oldKeyTable = keyTable; V[] oldValueTable = valueTable; keyTable = new int[newSize]; valueTable = (V[])new Object[newSize]; if (size > 0) { for (int i = 0; i < oldCapacity; i++) { int key = oldKeyTable[i]; if (key != 0) {putResize(key, oldValueTable[i]);} } } } /** * Effectively does nothing here because the hashMultiplier is no longer stored or used. * Subclasses can use this as some kind of identifier or user data, though. * * @return any int; the value isn't used internally, but may be used by subclasses to identify something */ public int getHashMultiplier() { return 0; } /** * Effectively does nothing here because the hashMultiplier is no longer stored or used. * Subclasses can use this to set some kind of identifier or user data, though. * * @param unused any int; will not be used as-is */ public void setHashMultiplier(int unused) { } /** * Gets the length of the internal array used to store all keys, as well as empty space awaiting more items to be * entered. This length is equal to the length of the array used to store all values, and empty space for values, * here. This is also called the capacity. * @return the length of the internal array that holds all keys */ public int getTableSize() { return keyTable.length; } public float getLoadFactor () { return loadFactor; } public void setLoadFactor (float loadFactor) { if (loadFactor <= 0f || loadFactor > 1f) {throw new IllegalArgumentException("loadFactor must be > 0 and <= 1: " + loadFactor);} this.loadFactor = loadFactor; int tableSize = tableSize(size, loadFactor); if (tableSize - 1 != mask) { resize(tableSize); } } @Override public int hashCode () { int h = hasZeroValue && zeroValue != null ? zeroValue.hashCode() ^ size : size; int[] keyTable = this.keyTable; V[] valueTable = this.valueTable; V v; for (int i = 0, n = keyTable.length; i < n; i++) { int key = keyTable[i]; if (key != 0) { h ^= key; v = valueTable[i]; if (v != null) h ^= v.hashCode(); } } return h; } @Override public boolean equals (Object obj) { if (obj == this) {return true;} if (!(obj instanceof IntObjectMap)) {return false;} IntObjectMap other = (IntObjectMap)obj; if (other.size != size) {return false;} if (other.hasZeroValue != hasZeroValue || !Objects.equals(other.zeroValue, zeroValue)) {return false;} int[] keyTable = this.keyTable; V[] valueTable = this.valueTable; for (int i = 0, n = keyTable.length; i < n; i++) { int key = keyTable[i]; if (key != 0) { V value = valueTable[i]; if (value == null) { if (other.getOrDefault(key, neverIdentical) != null) {return false;} } else { if (!value.equals(other.get(key))) {return false;} } } } return true; } @Override public String toString () { return toString(", ", true); } /** * Delegates to {@link #toString(String, boolean)} with the given entrySeparator and without braces. * This is different from {@link #toString()}, which includes braces by default. * * @param entrySeparator how to separate entries, such as {@code ", "} * @return a new String representing this map */ public String toString (String entrySeparator) { return toString(entrySeparator, false); } public String toString (String entrySeparator, boolean braces) { return appendTo(new StringBuilder(32), entrySeparator, braces).toString(); } /** * Makes a String from the contents of this IntObjectMap, but uses the given {@link IntAppender} and * {@link Appender} to convert each key and each value to a customizable representation and append them * to a temporary StringBuilder. These functions are often method references to methods in Base, such as * {@link Base#appendReadable(StringBuilder, int)} and {@link Base#appendUnsigned(StringBuilder, int)}. To use * the default String representation, you can use {@code StringBuilder::append} as an appender. To write values * so that they can be read back as Java source code, use {@code Base::appendReadable} for the keyAppender. * * @param entrySeparator how to separate entries, such as {@code ", "} * @param keyValueSeparator how to separate each key from its value, such as {@code "="} or {@code ":"} * @param braces true to wrap the output in curly braces, or false to omit them * @param keyAppender a function that takes a StringBuilder and an int, and returns the modified StringBuilder * @param valueAppender a function that takes a StringBuilder and a V, and returns the modified StringBuilder * @return a new String representing this map */ public String toString (String entrySeparator, String keyValueSeparator, boolean braces, IntAppender keyAppender, Appender valueAppender){ return appendTo(new StringBuilder(), entrySeparator, keyValueSeparator, braces, keyAppender, valueAppender).toString(); } public StringBuilder appendTo (StringBuilder sb, String entrySeparator, boolean braces) { return appendTo(sb, entrySeparator, "=", braces, StringBuilder::append, StringBuilder::append); } /** * Appends to a StringBuilder from the contents of this IntFloatMap, but uses the given {@link IntAppender} and * {@link Appender} to convert each key and each value to a customizable representation and append them * to a StringBuilder. These functions are often method references to methods in Base, such as * {@link Base#appendReadable(StringBuilder, int)} and {@link Base#appendUnsigned(StringBuilder, int)}. To use * the default String representation, you can use {@code StringBuilder::append} as an appender. To write values * so that they can be read back as Java source code, use {@code Base::appendReadable} for the keyAppender. * * @param sb a StringBuilder that this can append to * @param entrySeparator how to separate entries, such as {@code ", "} * @param keyValueSeparator how to separate each key from its value, such as {@code "="} or {@code ":"} * @param braces true to wrap the output in curly braces, or false to omit them * @param keyAppender a function that takes a StringBuilder and an int, and returns the modified StringBuilder * @param valueAppender a function that takes a StringBuilder and a V, and returns the modified StringBuilder * @return {@code sb}, with the appended keys and values of this map */ public StringBuilder appendTo (StringBuilder sb, String entrySeparator, String keyValueSeparator, boolean braces, IntAppender keyAppender, Appender valueAppender) { if (size == 0) {return braces ? sb.append("{}") : sb;} if (braces) {sb.append('{');} if (hasZeroValue) { keyAppender.apply(sb, 0).append(keyValueSeparator); valueAppender.apply(sb, zeroValue); if(zeroValue == this) sb.append("(this)"); else valueAppender.apply(sb, zeroValue); if (size > 1) {sb.append(entrySeparator);} } int[] keyTable = this.keyTable; V[] valueTable = this.valueTable; int i = keyTable.length; while (i-- > 0) { int key = keyTable[i]; if (key == 0) {continue;} keyAppender.apply(sb, key).append(keyValueSeparator); V value = valueTable[i]; if(value == this) sb.append("(this)"); else valueAppender.apply(sb, value); break; } while (i-- > 0) { int key = keyTable[i]; if (key == 0) {continue;} sb.append(entrySeparator); keyAppender.apply(sb, key).append(keyValueSeparator); V value = valueTable[i]; if(value == this) sb.append("(this)"); else valueAppender.apply(sb, value); } if (braces) {sb.append('}');} return sb; } /** * Performs the given action for each entry in this map until all entries * have been processed or the action throws an exception. Unless * otherwise specified by the implementing class, actions are performed in * the order of entry set iteration (if an iteration order is specified.) * Exceptions thrown by the action are relayed to the caller. * * @param action The action to be performed for each entry */ public void forEach (IntObjBiConsumer action) { for (Entry entry : entrySet()) { action.accept(entry.getKey(), entry.getValue()); } } /** * Replaces each entry's value with the result of invoking the given * function on that entry until all entries have been processed or the * function throws an exception. Exceptions thrown by the function are * relayed to the caller. * * @param function the function to apply to each entry */ public void replaceAll (IntObjToObjBiFunction function) { for (Entry entry : entrySet()) { entry.setValue(function.apply(entry.getKey(), entry.getValue())); } } /** * Reduces the size of the map to the specified size. If the map is already smaller than the specified * size, no action is taken. This indiscriminately removes items from the backing array until the * requested newSize is reached, or until the full backing array has had its elements removed. *
* This tries to remove from the end of the iteration order, but because the iteration order is not * guaranteed by an unordered map, this can remove essentially any item(s) from the map if it is larger * than newSize. * * @param newSize the target size to try to reach by removing items, if smaller than the current size */ public void truncate (int newSize) { int[] keyTable = this.keyTable; V[] valTable = this.valueTable; newSize = Math.max(0, newSize); for (int i = keyTable.length - 1; i >= 0 && size > newSize; i--) { if (keyTable[i] != 0) { keyTable[i] = 0; valTable[i] = null; --size; } } if (hasZeroValue && size > newSize) { hasZeroValue = false; zeroValue = null; --size; } } /** * Reuses the iterator of the reused {@link Entries} produced by {@link #entrySet()}; * does not permit nested iteration. Iterate over {@link Entries#Entries(IntObjectMap)} if you * need nested or multithreaded iteration. You can remove an Entry from this IntObjectMap * using this Iterator. * * @return an {@link Iterator} over {@link Entry} key-value pairs; remove is supported. */ @Override public @NonNull EntryIterator iterator () { return entrySet().iterator(); } /** * Returns a {@link Set} view of the keys contained in this map. * The set is backed by the map, so changes to the map are * reflected in the set, and vice versa. If the map is modified * while an iteration over the set is in progress (except through * the iterator's own {@code remove} operation), the results of * the iteration are undefined. The set supports element removal, * which removes the corresponding mapping from the map, via the * {@code Iterator.remove}, {@code Set.remove}, * {@code removeAll}, {@code retainAll}, and {@code clear} * operations. It does not support the {@code add} or {@code addAll} * operations. * *

Note that the same Collection instance is returned each time this * method is called. Use the {@link Keys} constructor for nested or * multithreaded iteration. * * @return a set view of the keys contained in this map */ public Keys keySet () { if (keys1 == null || keys2 == null) { keys1 = new Keys(this); keys2 = new Keys(this); } if (!keys1.iter.valid) { keys1.iter.reset(); keys1.iter.valid = true; keys2.iter.valid = false; return keys1; } keys2.iter.reset(); keys2.iter.valid = true; keys1.iter.valid = false; return keys2; } /** * Returns a Collection of the values in the map. Remove is supported. Note that the same Collection instance is returned each * time this method is called. Use the {@link Values} constructor for nested or multithreaded iteration. * * @return a {@link Collection} containing V values */ public Values values () { if (values1 == null || values2 == null) { values1 = new Values(this); values2 = new Values(this); } if (!values1.iter.valid) { values1.iter.reset(); values1.iter.valid = true; values2.iter.valid = false; return values1; } values2.iter.reset(); values2.iter.valid = true; values1.iter.valid = false; return values2; } /** * Returns a Set of Entry, containing the entries in the map. Remove is supported by the Set's iterator. * Note that the same iterator instance is returned each time this method is called. * Use the {@link Entries} constructor for nested or multithreaded iteration. * * @return a {@link Set} of {@link Entry} key-value pairs */ public Entries entrySet () { if (entries1 == null || entries2 == null) { entries1 = new Entries(this); entries2 = new Entries(this); } if (!entries1.iter.valid) { entries1.iter.reset(); entries1.iter.valid = true; entries2.iter.valid = false; return entries1; } entries2.iter.reset(); entries2.iter.valid = true; entries1.iter.valid = false; return entries2; } public static class Entry { public int key; @Nullable public V value; public Entry () { } public Entry (int key, @Nullable V value) { this.key = key; this.value = value; } public Entry (Entry entry) { this.key = entry.key; this.value = entry.value; } @Override public String toString () { return key + "=" + value; } /** * Returns the key corresponding to this entry. * * @return the key corresponding to this entry * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ public int getKey () { return key; } /** * Returns the value corresponding to this entry. If the mapping * has been removed from the backing map (by the iterator's * {@code remove} operation), the results of this call are undefined. * * @return the value corresponding to this entry */ @Nullable public V getValue () { return value; } /** * Replaces the value corresponding to this entry with the specified * value (optional operation). (Writes through to the map.) The * behavior of this call is undefined if the mapping has already been * removed from the map (by the iterator's {@code remove} operation). * * @param value new value to be stored in this entry * @return old value corresponding to the entry * @throws UnsupportedOperationException if the {@code put} operation * is not supported by the backing map * @throws ClassCastException if the class of the specified value * prevents it from being stored in the backing map * @throws NullPointerException if the backing map does not permit * null values, and the specified value is null * @throws IllegalArgumentException if some property of this value * prevents it from being stored in the backing map * @throws IllegalStateException implementations may, but are not * required to, throw this exception if the entry has been * removed from the backing map. */ @Nullable public V setValue (@Nullable V value) { V old = this.value; this.value = value; return old; } @Override public boolean equals (@Nullable Object o) { if (this == o) {return true;} if (o == null || getClass() != o.getClass()) {return false;} Entry entry = (Entry)o; if (key != entry.key) {return false;} return Objects.equals(value, entry.value); } @Override public int hashCode () { return value == null ? key : key ^ value.hashCode(); } } public static abstract class MapIterator { static protected final int INDEX_ILLEGAL = -2, INDEX_ZERO = -1; public boolean hasNext; protected final IntObjectMap map; protected int nextIndex, currentIndex; protected boolean valid = true; public MapIterator (IntObjectMap map) { this.map = map; reset(); } public void reset () { currentIndex = INDEX_ILLEGAL; nextIndex = INDEX_ZERO; if (map.hasZeroValue) {hasNext = true;} else {findNextIndex();} } protected void findNextIndex () { int[] keyTable = map.keyTable; for (int n = keyTable.length; ++nextIndex < n; ) { if (keyTable[nextIndex] != 0) { hasNext = true; return; } } hasNext = false; } /** * Returns {@code true} if the iteration has more elements. * (In other words, returns {@code true} if next() would * return an element rather than throwing an exception.) * * @return {@code true} if the iteration has more elements */ public boolean hasNext () { return hasNext; } public void remove () { int i = currentIndex; if (i == INDEX_ZERO && map.hasZeroValue) { map.hasZeroValue = false; map.zeroValue = null; } else if (i < 0) { throw new IllegalStateException("next must be called before remove."); } else { int[] keyTable = map.keyTable; V[] valueTable = map.valueTable; int mask = map.mask; int next = i + 1 & mask; int key; while ((key = keyTable[next]) != 0) { int placement = map.place(key); if ((next - placement & mask) > (i - placement & mask)) { keyTable[i] = key; valueTable[i] = valueTable[next]; i = next; } next = next + 1 & mask; } keyTable[i] = 0; valueTable[i] = null; if (i != currentIndex) {--nextIndex;} } currentIndex = INDEX_ILLEGAL; map.size--; } } public static class KeyIterator extends MapIterator implements IntIterator { public KeyIterator (IntObjectMap map) { super(map); } @Override public int nextInt () { if (!hasNext) {throw new NoSuchElementException();} if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");} int key = nextIndex == INDEX_ZERO ? 0 : map.keyTable[nextIndex]; currentIndex = nextIndex; findNextIndex(); return key; } /** * Returns a new IntList containing the remaining keys. */ public IntList toList () { IntList list = new IntList(map.size); while (hasNext) {list.add(nextInt());} return list; } @Override public boolean hasNext () { if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");} return hasNext; } } public static class ValueIterator extends MapIterator implements Iterator { public ValueIterator (IntObjectMap map) { super(map); } /** * Returns the next {@code V} element in the iteration. * * @return the next {@code V} element in the iteration * @throws NoSuchElementException if the iteration has no more elements */ @Override @Nullable public V next () { if (!hasNext) {throw new NoSuchElementException();} if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");} V value = nextIndex == INDEX_ZERO ? map.zeroValue : map.valueTable[nextIndex]; currentIndex = nextIndex; findNextIndex(); return value; } @Override public boolean hasNext () { if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");} return hasNext; } } public static class EntryIterator extends MapIterator implements Iterable>, Iterator> { protected Entry entry = new Entry<>(); public EntryIterator (IntObjectMap map) { super(map); } @Override public @NonNull EntryIterator iterator () { return this; } /** * Note the same entry instance is returned each time this method is called. */ @Override public Entry next () { if (!hasNext) {throw new NoSuchElementException();} if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");} int[] keyTable = map.keyTable; if (nextIndex == INDEX_ZERO) { entry.key = 0; entry.value = map.zeroValue; } else { entry.key = keyTable[nextIndex]; entry.value = map.valueTable[nextIndex]; } currentIndex = nextIndex; findNextIndex(); return entry; } @Override public boolean hasNext () { if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");} return hasNext; } } public static class Entries extends AbstractSet> implements EnhancedCollection> { protected EntryIterator iter; public Entries (IntObjectMap map) { iter = new EntryIterator<>(map); } /** * Returns an iterator over the elements contained in this collection. * * @return an iterator over the elements contained in this collection */ @Override public @NonNull EntryIterator iterator () { return iter; } @Override public int size () { return iter.map.size; } @Override public int hashCode () { int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; iter.reset(); int hc = super.hashCode(); iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return hc; } @Override public String toString () { return toString(", ", true); } /** * The iterator is reused by this data structure, and you can reset it * back to the start of the iteration order using this. */ public void resetIterator () { iter.reset(); } /** * Returns a new {@link ObjectList} containing the remaining items. * Does not change the position of this iterator. */ public ObjectList> toList () { ObjectList> list = new ObjectList<>(iter.map.size); int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; while (iter.hasNext) {list.add(new Entry<>(iter.next()));} iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return list; } /** * Append the remaining items that this can iterate through into the given Collection. * Does not change the position of this iterator. * @param coll any modifiable Collection; may have items appended into it * @return the given collection */ public Collection> appendInto(Collection> coll) { int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; while (iter.hasNext) {coll.add(new Entry<>(iter.next()));} iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return coll; } /** * Append the remaining items that this can iterate through into the given Map. * Does not change the position of this iterator. Note that a Map is not a Collection. * @param coll any modifiable Map; may have items appended into it * @return the given map */ public IntObjectMap appendInto(IntObjectMap coll) { int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; while (iter.hasNext) { iter.next(); coll.put(iter.entry.key, iter.entry.value); } iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return coll; } } public static class Values extends AbstractCollection implements EnhancedCollection { protected ValueIterator iter; @Override public boolean add (@Nullable V item) { throw new UnsupportedOperationException("IntObjectMap.Values is read-only"); } @Override public boolean remove (@Nullable Object item) { throw new UnsupportedOperationException("IntObjectMap.Values is read-only"); } @Override public boolean contains (@Nullable Object item) { return iter.map.containsValue(item); } @Override public void clear () { throw new UnsupportedOperationException("IntObjectMap.Values is read-only"); } /** * Returns an iterator over the elements contained in this collection. * * @return an iterator over the elements contained in this collection */ @Override public @NonNull ValueIterator iterator () { return iter; } @Override public int size () { return iter.map.size; } @Override public String toString () { return toString(", ", true); } public Values (IntObjectMap map) { iter = new ValueIterator<>(map); } /** * The iterator is reused by this data structure, and you can reset it * back to the start of the iteration order using this. */ public void resetIterator () { iter.reset(); } /** * Returns a new {@link ObjectList} containing the remaining items. * Does not change the position of this iterator. */ public ObjectList toList () { ObjectList list = new ObjectList<>(iter.map.size); int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; while (iter.hasNext) {list.add(iter.next());} iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return list; } /** * Append the remaining items that this can iterate through into the given Collection. * Does not change the position of this iterator. * @param coll any modifiable Collection; may have items appended into it * @return the given collection */ public Collection appendInto(Collection coll) { int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; while (iter.hasNext) {coll.add(iter.next());} iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return coll; } } public static class Keys implements PrimitiveSet.SetOfInt { protected KeyIterator iter; public Keys (IntObjectMap map) { iter = new KeyIterator<>(map); } @Override public boolean add (int item) { throw new UnsupportedOperationException("IntObjectMap.Keys is read-only"); } @Override public boolean remove (int item) { throw new UnsupportedOperationException("IntObjectMap.Keys is read-only"); } @Override public boolean contains (int item) { return iter.map.containsKey(item); } @Override public IntIterator iterator () { return iter; } @Override public void clear () { throw new UnsupportedOperationException("IntObjectMap.Keys is read-only"); } @Override public int size () { return iter.map.size; } @Override public int hashCode () { int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; iter.reset(); int hc = 1; while (iter.hasNext) {hc += iter.nextInt();} iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return hc; } /** * The iterator is reused by this data structure, and you can reset it * back to the start of the iteration order using this. */ public void resetIterator () { iter.reset(); } /** * Returns a new {@link ObjectList} containing the remaining items. * Does not change the position of this iterator. */ public IntList toList () { IntList list = new IntList(iter.map.size); int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; while (iter.hasNext) {list.add(iter.nextInt());} iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return list; } /** * Append the remaining items that this can iterate through into the given Collection. * Does not change the position of this iterator. * @param coll any modifiable Collection; may have items appended into it * @return the given collection */ public PrimitiveCollection.OfInt appendInto(PrimitiveCollection.OfInt coll) { int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; while (iter.hasNext) {coll.add(iter.nextInt());} iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return coll; } @SuppressWarnings("EqualsWhichDoesntCheckParameterClass") @Override public boolean equals (Object other) { int currentIdx = iter.currentIndex, nextIdx = iter.nextIndex; boolean hn = iter.hasNext; boolean eq = SetOfInt.super.equalContents(other); iter.currentIndex = currentIdx; iter.nextIndex = nextIdx; iter.hasNext = hn; return eq; } @Override public String toString () { return toString(", ", true); } } @Nullable public V putIfAbsent (int key, V value) { if (key == 0) { if (hasZeroValue) { return zeroValue; } return put(key, value); } int i = locateKey(key); if (i >= 0) { return valueTable[i]; } return put(key, value); } public boolean replace (int key, V oldValue, V newValue) { V curValue = get(key); if (!Objects.equals(curValue, oldValue) || !containsKey(key)) { return false; } put(key, newValue); return true; } @Nullable public V replace (int key, V value) { if (key == 0) { if (hasZeroValue) { V oldValue = zeroValue; zeroValue = value; return oldValue; } return defaultValue; } int i = locateKey(key); if (i >= 0) { V oldValue = valueTable[i]; valueTable[i] = value; return oldValue; } return defaultValue; } public V computeIfAbsent (int key, IntToObjFunction mappingFunction) { int i = locateKey(key); if (i < 0) { V newValue = mappingFunction.apply(key); put(key, newValue); return newValue; } else return valueTable[i]; } public boolean remove (int key, Object value) { int i = locateKey(key); if (i >= 0 && Objects.equals(valueTable[i], value)) { remove(key); return true; } return false; } @Nullable public V merge (int key, V value, ObjObjToObjBiFunction remappingFunction) { int i = locateKey(key); V next = (i < 0) ? value : remappingFunction.apply(valueTable[i], value); if (next == null) remove(key); else put(key, next); return next; } /** * Just like Map's merge() default method, but this doesn't use Java 8 APIs (so it should work on RoboVM), and this * won't remove entries if the remappingFunction returns null (in that case, it will call {@code put(key, null)}). * This also uses a functional interface from Funderby instead of the JDK, for RoboVM support. * @param key key with which the resulting value is to be associated * @param value the value to be merged with the existing value * associated with the key or, if no existing value * is associated with the key, to be associated with the key * @param remappingFunction given a V from this and the V {@code value}, this should return what V to use * @return the value now associated with key */ @Nullable public V combine (int key, V value, ObjObjToObjBiFunction remappingFunction) { int i = locateKey(key); V next = (i < 0) ? value : remappingFunction.apply(valueTable[i], value); put(key, next); return next; } /** * Simply calls {@link #combine(int, Object, ObjObjToObjBiFunction)} on this map using every * key-value pair in {@code other}. If {@code other} isn't empty, calling this will probably modify * this map, though this depends on the {@code remappingFunction}. * @param other a non-null Map (or subclass) with compatible key and value types * @param remappingFunction given a V value from this and a value from other, this should return what V to use */ public void combine (IntObjectMap other, ObjObjToObjBiFunction remappingFunction) { for (IntObjectMap.Entry e : other.entrySet()) { combine(e.getKey(), e.getValue(), remappingFunction); } } /** * Constructs an empty map given the key type as a generic type argument. * This is usually less useful than just using the constructor, but can be handy * in some code-generation scenarios when you don't know how many arguments you will have. * * @param the type of values * @return a new map containing nothing */ public static IntObjectMap with () { return new IntObjectMap<>(0); } /** * Constructs a single-entry map given one key and one value. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Like the more-argument with(), this will * convert its V value to a primitive float, regardless of which Number type was used. * * @param key0 the first and only key; will be converted to primitive int * @param value0 the first and only value * @param the type of value0 * @return a new map containing just the entry mapping key0 to value0 */ public static IntObjectMap with (Number key0, V value0) { IntObjectMap map = new IntObjectMap<>(1); map.put(key0.intValue(), value0); return map; } /** * Constructs a map given alternating keys and values. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Like the more-argument with(), this will * convert its V values to primitive floats, regardless of which Number type was used. * * @param key0 a Number key; will be converted to primitive int * @param value0 a V value * @param key1 a Number key; will be converted to primitive int * @param value1 a V value * @param the type of values * @return a new map containing the given key-value pairs */ public static IntObjectMap with (Number key0, V value0, Number key1, V value1) { IntObjectMap map = new IntObjectMap<>(2); map.put(key0.intValue(), value0); map.put(key1.intValue(), value1); return map; } /** * Constructs a map given alternating keys and values. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Like the more-argument with(), this will * convert its V values to primitive floats, regardless of which Number type was used. * * @param key0 a Number key; will be converted to primitive int * @param value0 a V value * @param key1 a Number key; will be converted to primitive int * @param value1 a V value * @param key2 a Number key; will be converted to primitive int * @param value2 a V value * @param the type of values * @return a new map containing the given key-value pairs */ public static IntObjectMap with (Number key0, V value0, Number key1, V value1, Number key2, V value2) { IntObjectMap map = new IntObjectMap<>(3); map.put(key0.intValue(), value0); map.put(key1.intValue(), value1); map.put(key2.intValue(), value2); return map; } /** * Constructs a map given alternating keys and values. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Like the more-argument with(), this will * convert its V values to primitive floats, regardless of which Number type was used. * * @param key0 a Number key; will be converted to primitive int * @param value0 a V value * @param key1 a Number key; will be converted to primitive int * @param value1 a V value * @param key2 a Number key; will be converted to primitive int * @param value2 a V value * @param key3 a Number key; will be converted to primitive int * @param value3 a V value * @param the type of values * @return a new map containing the given key-value pairs */ public static IntObjectMap with (Number key0, V value0, Number key1, V value1, Number key2, V value2, Number key3, V value3) { IntObjectMap map = new IntObjectMap<>(4); map.put(key0.intValue(), value0); map.put(key1.intValue(), value1); map.put(key2.intValue(), value2); map.put(key3.intValue(), value3); return map; } /** * Constructs a map given alternating keys and values. * This can be useful in some code-generation scenarios, or when you want to make a * map conveniently by-hand and have it populated at the start. You can also use * {@link #IntObjectMap(int[], Object[])}, which takes all keys and then all values. * This needs all keys to have the same type, because it gets a generic type from the * first key parameter. All keys must be some type of boxed Number, such as {@link Integer} * or {@link Double}, and will be converted to primitive {@code int}s. Any values that don't * have V as their type or keys that aren't {@code Number}s have that entry skipped. * * @param key0 the first key; will be converted to primitive int * @param value0 the first value; will be used to determine the type of all values * @param rest an array or varargs of alternating Number, V, Number, V... elements * @param the type of values, inferred from value0 * @return a new map containing the given keys and values */ @SuppressWarnings("unchecked") public static IntObjectMap with (Number key0, V value0, Object... rest) { IntObjectMap map = new IntObjectMap<>(1 + (rest.length >>> 1)); map.put(key0.intValue(), value0); for (int i = 1; i < rest.length; i += 2) { try { map.put(((Number)rest[i - 1]).intValue(), (V)rest[i]); } catch (ClassCastException ignored) { } } return map; } /** * Constructs an empty map given the key type as a generic type argument. * This is usually less useful than just using the constructor, but can be handy * in some code-generation scenarios when you don't know how many arguments you will have. * * @param the type of values * @return a new map containing nothing */ public static IntObjectMap withPrimitive () { return new IntObjectMap<>(0); } /** * Constructs a single-entry map given one key and one value. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Unlike with(), this takes unboxed int as * its key type, and will not box it. * * @param key0 a int key * @param value0 a V value * @param the type of value0 * @return a new map containing just the entry mapping key0 to value0 */ public static IntObjectMap withPrimitive (int key0, V value0) { IntObjectMap map = new IntObjectMap<>(1); map.put(key0, value0); return map; } /** * Constructs a map given alternating keys and values. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Unlike with(), this takes unboxed int as * its key type, and will not box it. * * @param key0 a int key * @param value0 a V value * @param key1 a int key * @param value1 a V value * @param the type of values * @return a new map containing the given key-value pairs */ public static IntObjectMap withPrimitive (int key0, V value0, int key1, V value1) { IntObjectMap map = new IntObjectMap<>(2); map.put(key0, value0); map.put(key1, value1); return map; } /** * Constructs a map given alternating keys and values. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Unlike with(), this takes unboxed int as * its key type, and will not box it. * * @param key0 a int key * @param value0 a V value * @param key1 a int key * @param value1 a V value * @param key2 a int key * @param value2 a V value * @param the type of values * @return a new map containing the given key-value pairs */ public static IntObjectMap withPrimitive (int key0, V value0, int key1, V value1, int key2, V value2) { IntObjectMap map = new IntObjectMap<>(3); map.put(key0, value0); map.put(key1, value1); map.put(key2, value2); return map; } /** * Constructs a map given alternating keys and values. * This is mostly useful as an optimization for {@link #with(Number, Object, Object...)} * when there's no "rest" of the keys or values. Unlike with(), this takes unboxed int as * its key type, and will not box it. * * @param key0 a int key * @param value0 a V value * @param key1 a int key * @param value1 a V value * @param key2 a int key * @param value2 a V value * @param key3 a int key * @param value3 a V value * @param the type of values * @return a new map containing the given key-value pairs */ public static IntObjectMap withPrimitive (int key0, V value0, int key1, V value1, int key2, V value2, int key3, V value3) { IntObjectMap map = new IntObjectMap<>(4); map.put(key0, value0); map.put(key1, value1); map.put(key2, value2); map.put(key3, value3); return map; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy