![JAR search and dependency download from the Maven repository](/logo.png)
com.github.tommyettinger.ds.IntSet Maven / Gradle / Ivy
Show all versions of jdkgdxds Show documentation
/*
* Copyright (c) 2022-2025 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.github.tommyettinger.ds;
import com.github.tommyettinger.digital.BitConversion;
import com.github.tommyettinger.ds.support.util.IntIterator;
import org.checkerframework.checker.nullness.qual.Nullable;
import java.util.Arrays;
import java.util.NoSuchElementException;
import static com.github.tommyettinger.ds.Utilities.tableSize;
/**
* An unordered set where the items are unboxed ints. No allocation is done except when growing the table size.
*
* This class performs fast contains and remove (typically O(1), worst case O(n) but that is rare in practice). Add may be
* slightly slower, depending on hash collisions. Hashcodes are rehashed to reduce collisions and the need to resize. Load factors
* greater than 0.91 greatly increase the chances to resize to the next higher POT size.
*
* Unordered sets and maps are not designed to provide especially fast iteration. Iteration is faster with {@link Ordered} types like
* ObjectOrderedSet and ObjectObjectOrderedMap.
*
* This implementation uses linear probing with the backward shift algorithm for removal. Linear probing continues to work even
* when all hashCodes collide; it just works more slowly in that case.
*
* @author Nathan Sweet
* @author Tommy Ettinger
*/
public class IntSet implements PrimitiveSet.SetOfInt {
protected int size;
protected int[] keyTable;
protected boolean hasZeroValue;
/**
* Between 0f (exclusive) and 1f (inclusive, if you're careful), this determines how full the backing table
* can get before this increases their size. Larger values use less memory but make the data structure slower.
*/
protected float loadFactor;
/**
* Precalculated value of {@code (int)(keyTable.length * loadFactor)}, used to determine when to resize.
*/
protected int threshold;
/**
* Used by {@link #place(int)} to bit shift the upper bits of an {@code int} into a usable range (>= 0 and <=
* {@link #mask}). The shift can be negative, which is convenient to match the number of bits in mask: if mask is a 7-bit
* number, a shift of -7 shifts the upper 7 bits into the lowest 7 positions. This class sets the shift > 32 and < 64,
* which when used with an int will still move the upper bits of an int to the lower bits due to Java's implicit modulus on
* shifts.
*
* {@link #mask} can also be used to mask the low bits of a number, which may be faster for some hashcodes, if
* {@link #place(int)} is overridden.
*/
protected int shift;
/**
* A bitmask used to confine hash codes to the size of the table. Must be all 1-bits in its low positions, ie a power of two
* minus 1. If {@link #place(int)} is overridden, this can be used instead of {@link #shift} to isolate usable bits of a
* hash.
*/
protected int mask;
@Nullable protected transient IntSetIterator iterator1;
@Nullable protected transient IntSetIterator iterator2;
/**
* Creates a new set with an initial capacity of 51 and a load factor of {@link Utilities#getDefaultLoadFactor()}.
*/
public IntSet() {
this(51, Utilities.getDefaultLoadFactor());
}
/**
* Creates a new set with a load factor of {@link Utilities#getDefaultLoadFactor()}.
*
* @param initialCapacity If not a power of two, it is increased to the next nearest power of two.
*/
public IntSet(int initialCapacity) {
this(initialCapacity, Utilities.getDefaultLoadFactor());
}
/**
* Creates a new set with the specified initial capacity and load factor. This set will hold initialCapacity items before
* growing the backing table.
*
* @param initialCapacity If not a power of two, it is increased to the next nearest power of two.
* @param loadFactor what fraction of the capacity can be filled before this has to resize; 0 < loadFactor <= 1
*/
public IntSet(int initialCapacity, float loadFactor) {
if (loadFactor <= 0f || loadFactor > 1f) {throw new IllegalArgumentException("loadFactor must be > 0 and <= 1: " + loadFactor);}
this.loadFactor = loadFactor;
int tableSize = tableSize(initialCapacity, loadFactor);
mask = tableSize - 1;
threshold = Math.min((int)(tableSize * (double)loadFactor + 1), mask);
shift = BitConversion.countLeadingZeros(mask) + 32;
keyTable = new int[tableSize];
}
/**
* Creates a new instance containing the items in the specified iterator.
*
* @param coll an iterator that will have its remaining contents added to this
*/
public IntSet(IntIterator coll) {
this();
addAll(coll);
}
/**
* Creates a new set identical to the specified set.
*/
public IntSet(IntSet set) {
this((int)(set.keyTable.length * set.loadFactor), set.loadFactor);
System.arraycopy(set.keyTable, 0, keyTable, 0, set.keyTable.length);
size = set.size;
hasZeroValue = set.hasZeroValue;
}
/**
* Creates a new set using all distinct items in the given PrimitiveCollection, such as a
* {@link IntList} or {@link IntObjectMap.Keys}.
*
* @param coll a PrimitiveCollection that will be used in full, except for duplicate items
*/
public IntSet(OfInt coll) {
this(coll.size());
addAll(coll);
}
/**
* Creates a new set using {@code length} items from the given {@code array}, starting at {@code} offset (inclusive).
*
* @param array an array to draw items from
* @param offset the first index in array to draw an item from
* @param length how many items to take from array; bounds-checking is the responsibility of the using code
*/
public IntSet(int[] array, int offset, int length) {
this(length);
addAll(array, offset, length);
}
/**
* Creates a new set containing all the items in the given array.
*
* @param array an array that will be used in full, except for duplicate items
*/
public IntSet(int[] array) {
this(array, 0, array.length);
}
/**
* Returns an index >= 0 and <= {@link #mask} for the specified {@code item}.
*
* @param item any int; it is usually mixed and shifted or masked here
* @return an index between 0 and {@link #mask} (both inclusive)
*/
protected int place (int item) {
return (item ^ (item << 9 | item >>> 23) ^ (item << 21 | item >>> 11)) & mask;
}
/**
* Returns true if the key was not already in the set.
*/
@Override
public boolean add (int key) {
if (key == 0) {
if (hasZeroValue) return false;
hasZeroValue = true;
size++;
return true;
}
int[] keyTable = this.keyTable;
for (int i = place(key); ; i = i + 1 & mask) {
int other = keyTable[i];
if (key == other)
return false; // Existing key was found.
if (other == 0) {
keyTable[i] = key;
if (++size >= threshold) {resize(keyTable.length << 1);}
return true;
}
}
}
public boolean addAll (IntList array) {
return addAll(array.items, 0, array.size());
}
public boolean addAll (IntList array, int offset, int length) {
if (offset + length > array.size()) {throw new IllegalArgumentException("offset + length must be <= size: " + offset + " + " + length + " <= " + array.size());}
return addAll(array.items, offset, length);
}
public boolean addAll (int... array) {
return addAll(array, 0, array.length);
}
public boolean addAll (int[] array, int offset, int length) {
ensureCapacity(length);
int oldSize = size;
for (int i = offset, n = i + length; i < n; i++) {add(array[i]);}
return size != oldSize;
}
public boolean addAll (IntSet set) {
ensureCapacity(set.size);
int oldSize = size;
if (set.hasZeroValue) {add(0);}
int[] keyTable = set.keyTable;
for (int i = 0, n = keyTable.length; i < n; i++) {
int key = keyTable[i];
if (key != 0) {add(key);}
}
return size != oldSize;
}
/**
* Skips checks for existing keys, doesn't increment size, doesn't need to handle key 0.
*/
protected void addResize (int key) {
int[] keyTable = this.keyTable;
for (int i = place(key); ; i = i + 1 & mask) {
if (keyTable[i] == 0) {
keyTable[i] = key;
return;
}
}
}
/**
* Returns true if the key was removed.
*/
@Override
public boolean remove (int key) {
if (key == 0) {
if (hasZeroValue) {
hasZeroValue = false;
size--;
return true;
}
return false;
}
int pos;
int mask = this.mask;
int[] keyTable = this.keyTable;
for (int i = place(key); ; i = i + 1 & mask) {
int other = keyTable[i];
if (other == 0) {
return false; // Nothing is present.
}
if (other == key) {
pos = i; // Same key was found.
break;
}
}
int last, slot;
size--;
for (;;) {
pos = ((last = pos) + 1) & mask;
for (;;) {
if ((key = keyTable[pos]) == 0) {
keyTable[last] = 0;
// if(mask >= minCapacity && size < (threshold >>> 2))
// resize(keyTable.length >>> 1);
return true;
}
slot = place(key);
if (last <= pos ? last >= slot || slot > pos : last >= slot && slot > pos) break;
pos = (pos + 1) & mask;
}
keyTable[last] = key;
}
}
/**
* Returns true if the set has one or more items.
*/
public boolean notEmpty () {
return size != 0;
}
/**
* Returns true if the set is empty.
*/
@Override
public boolean isEmpty () {
return size == 0;
}
/**
* Reduces the size of the backing arrays to be the specified capacity / loadFactor, or less. If the capacity is already less,
* nothing is done. If the set contains more items than the specified capacity, the next highest power of two capacity is used
* instead.
*/
public void shrink (int maximumCapacity) {
if (maximumCapacity < 0) {throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);}
int tableSize = tableSize(maximumCapacity, loadFactor);
if (keyTable.length > tableSize) {resize(tableSize);}
}
/**
* Clears the set and reduces the size of the backing arrays to be the specified capacity / loadFactor, if they are larger.
*/
public void clear (int maximumCapacity) {
int tableSize = tableSize(maximumCapacity, loadFactor);
if (keyTable.length <= tableSize) {
clear();
return;
}
size = 0;
hasZeroValue = false;
resize(tableSize);
}
@Override
public void clear () {
if (size == 0) {return;}
size = 0;
Arrays.fill(keyTable, 0);
hasZeroValue = false;
}
@Override
public boolean contains (int key) {
if (key == 0) {return hasZeroValue;}
int[] keyTable = this.keyTable;
for (int i = place(key); ; i = i + 1 & mask) {
int other = keyTable[i];
if (key == other)
return true;
if (other == 0)
return false;
}
}
public int first () {
if (hasZeroValue) {return 0;}
int[] keyTable = this.keyTable;
for (int i = 0, n = keyTable.length; i < n; i++) {if (keyTable[i] != 0) {return keyTable[i];}}
throw new IllegalStateException("IntSetAlt is empty.");
}
/**
* Increases the size of the backing array to accommodate the specified number of additional items / loadFactor. Useful before
* adding many items to avoid multiple backing array resizes.
*/
public void ensureCapacity (int additionalCapacity) {
int tableSize = tableSize(size + additionalCapacity, loadFactor);
if (keyTable.length < tableSize) {resize(tableSize);}
}
protected void resize (int newSize) {
int oldCapacity = keyTable.length;
mask = newSize - 1;
threshold = Math.min((int)(newSize * (double)loadFactor + 1), mask);
shift = BitConversion.countLeadingZeros(mask) + 32;
int[] oldKeyTable = keyTable;
keyTable = new int[newSize];
if (size > 0) {
for (int i = 0; i < oldCapacity; i++) {
int key = oldKeyTable[i];
if (key != 0) {addResize(key);}
}
}
}
/**
* Effectively does nothing here because the hashMultiplier is no longer stored or used.
* Subclasses can use this as some kind of identifier or user data, though.
*
* @return any int; the value isn't used internally, but may be used by subclasses to identify something
*/
public int getHashMultiplier() {
return 0;
}
/**
* Effectively does nothing here because the hashMultiplier is no longer stored or used.
* Subclasses can use this to set some kind of identifier or user data, though.
*
* @param unused any int; will not be used as-is
*/
public void setHashMultiplier(int unused) {
}
public float getLoadFactor () {
return loadFactor;
}
public void setLoadFactor (float loadFactor) {
if (loadFactor <= 0f || loadFactor > 1f) {throw new IllegalArgumentException("loadFactor must be > 0 and <= 1: " + loadFactor);}
this.loadFactor = loadFactor;
int tableSize = tableSize(size, loadFactor);
if (tableSize - 1 != mask) {
resize(tableSize);
}
}
@Override
public int hashCode () {
int h = size;
int[] keyTable = this.keyTable;
for (int i = 0, n = keyTable.length; i < n; i++) {
int key = keyTable[i];
if (key != 0) {h += key;}
}
return h;
}
@SuppressWarnings("EqualsWhichDoesntCheckParameterClass")
@Override
public boolean equals (Object o) {
return SetOfInt.super.equalContents(o);
}
public StringBuilder appendTo (StringBuilder builder) {
if (size == 0) {return builder.append("[]");}
builder.append('[');
int[] keyTable = this.keyTable;
int i = keyTable.length;
if (hasZeroValue) {builder.append('0');} else {
while (i-- > 0) {
int key = keyTable[i];
if (key == 0) {continue;}
builder.append(key);
break;
}
}
while (i-- > 0) {
int key = keyTable[i];
if (key == 0) {continue;}
builder.append(", ");
builder.append(key);
}
builder.append(']');
return builder;
}
@Override
public String toString () {
return toString(", ", true);
}
/**
* Reduces the size of the set to the specified size. If the set is already smaller than the specified
* size, no action is taken. This indiscriminately removes items from the backing array until the
* requested newSize is reached, or until the full backing array has had its elements removed.
*
* This tries to remove from the end of the iteration order, but because the iteration order is not
* guaranteed by an unordered set, this can remove essentially any item(s) from the set if it is larger
* than newSize.
*
* @param newSize the target size to try to reach by removing items, if smaller than the current size
*/
public void truncate (int newSize) {
int[] keyTable = this.keyTable;
newSize = Math.max(0, newSize);
for (int i = keyTable.length - 1; i >= 0 && size > newSize; i--) {
if (keyTable[i] != 0) {
keyTable[i] = 0;
--size;
}
}
if (hasZeroValue && size > newSize) {
hasZeroValue = false;
--size;
}
}
/**
* Returns an iterator for the keys in the set. Remove is supported.
*
* Use the {@link IntSetIterator} constructor for nested or multithreaded iteration.
*/
@Override
public IntSetIterator iterator () {
if (iterator1 == null || iterator2 == null) {
iterator1 = new IntSetIterator(this);
iterator2 = new IntSetIterator(this);
}
if (!iterator1.valid) {
iterator1.reset();
iterator1.valid = true;
iterator2.valid = false;
return iterator1;
}
iterator2.reset();
iterator2.valid = true;
iterator1.valid = false;
return iterator2;
}
@Override
public int size () {
return size;
}
public static class IntSetIterator implements IntIterator {
static private final int INDEX_ILLEGAL = -2, INDEX_ZERO = -1;
/**
* This can be queried in place of calling {@link #hasNext()}. The method also performs
* a check that the iterator is valid, where using the field does not check.
*/
public boolean hasNext;
/**
* The next index in the set's key table to go to and return from {@link #nextInt()} (or,
* while discouraged because of boxing, {@link #next()}).
*/
protected int nextIndex;
/**
* The current index in the set's key table; this is the index that will be removed if
* {@link #remove()} is called.
*/
protected int currentIndex;
/**
* Internally employed by the iterator-reuse functionality.
*/
protected boolean valid = true;
/**
* The set to iterate over.
*/
protected final IntSet set;
public IntSetIterator (IntSet set) {
this.set = set;
reset();
}
public void reset () {
currentIndex = INDEX_ILLEGAL;
nextIndex = INDEX_ZERO;
if (set.hasZeroValue) {hasNext = true;} else {findNextIndex();}
}
protected void findNextIndex () {
int[] keyTable = set.keyTable;
for (int n = keyTable.length; ++nextIndex < n; ) {
if (keyTable[nextIndex] != 0) {
hasNext = true;
return;
}
}
hasNext = false;
}
/**
* Returns {@code true} if the iteration has more elements.
* (In other words, returns {@code true} if {@link #next} would
* return an element rather than throwing an exception.)
*
* @return {@code true} if the iteration has more elements
*/
@Override
public boolean hasNext () {
if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");}
return hasNext;
}
@Override
public void remove () {
int i = currentIndex;
if (i == INDEX_ZERO && set.hasZeroValue) {
set.hasZeroValue = false;
} else if (i < 0) {
throw new IllegalStateException("next must be called before remove.");
} else {
int[] keyTable = set.keyTable;
int mask = set.mask, next = i + 1 & mask, key;
while ((key = keyTable[next]) != 0) {
int placement = set.place(key);
if ((next - placement & mask) > (i - placement & mask)) {
keyTable[i] = key;
i = next;
}
next = next + 1 & mask;
}
keyTable[i] = 0;
if (i != currentIndex) {--nextIndex;}
}
currentIndex = INDEX_ILLEGAL;
set.size--;
}
@Override
public int nextInt () {
if (!hasNext) {throw new NoSuchElementException();}
if (!valid) {throw new RuntimeException("#iterator() cannot be used nested.");}
int key = nextIndex == INDEX_ZERO ? 0 : set.keyTable[nextIndex];
currentIndex = nextIndex;
findNextIndex();
return key;
}
/**
* Returns a new {@link IntList} containing the remaining items.
* Does not change the position of this iterator.
*/
public IntList toList () {
IntList list = new IntList(set.size);
int currentIdx = currentIndex, nextIdx = nextIndex;
boolean hn = hasNext;
while (hasNext) {list.add(nextInt());}
currentIndex = currentIdx;
nextIndex = nextIdx;
hasNext = hn;
return list;
}
/**
* Append the remaining items that this can iterate through into the given PrimitiveCollection.OfInt.
* Does not change the position of this iterator.
* @param coll any modifiable PrimitiveCollection.OfInt; may have items appended into it
* @return the given primitive collection
*/
public OfInt appendInto(OfInt coll) {
int currentIdx = currentIndex, nextIdx = nextIndex;
boolean hn = hasNext;
while (hasNext) {coll.add(nextInt());}
currentIndex = currentIdx;
nextIndex = nextIdx;
hasNext = hn;
return coll;
}
}
/**
* Constructs an empty set.
* This is usually less useful than just using the constructor, but can be handy
* in some code-generation scenarios when you don't know how many arguments you will have.
*
* @return a new set containing nothing
*/
public static IntSet with () {
return new IntSet(0);
}
/**
* Creates a new IntSet that holds only the given item, but can be resized.
* @param item an int item
* @return a new IntSet that holds the given item
*/
public static IntSet with (int item) {
IntSet set = new IntSet(1);
set.add(item);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* @param item0 an int item
* @param item1 an int item
* @return a new IntSet that holds the given items
*/
public static IntSet with (int item0, int item1) {
IntSet set = new IntSet(2);
set.add(item0);
set.add(item1);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* @param item0 an int item
* @param item1 an int item
* @param item2 an int item
* @return a new IntSet that holds the given items
*/
public static IntSet with (int item0, int item1, int item2) {
IntSet set = new IntSet(3);
set.add(item0);
set.add(item1);
set.add(item2);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* @param item0 an int item
* @param item1 an int item
* @param item2 an int item
* @param item3 an int item
* @return a new IntSet that holds the given items
*/
public static IntSet with (int item0, int item1, int item2, int item3) {
IntSet set = new IntSet(4);
set.add(item0);
set.add(item1);
set.add(item2);
set.add(item3);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* @param item0 an int item
* @param item1 an int item
* @param item2 an int item
* @param item3 an int item
* @param item4 an int item
* @return a new IntSet that holds the given items
*/
public static IntSet with (int item0, int item1, int item2, int item3, int item4) {
IntSet set = new IntSet(5);
set.add(item0);
set.add(item1);
set.add(item2);
set.add(item3);
set.add(item4);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* @param item0 an int item
* @param item1 an int item
* @param item2 an int item
* @param item3 an int item
* @param item4 an int item
* @param item5 an int item
* @return a new IntSet that holds the given items
*/
public static IntSet with (int item0, int item1, int item2, int item3, int item4, int item5) {
IntSet set = new IntSet(6);
set.add(item0);
set.add(item1);
set.add(item2);
set.add(item3);
set.add(item4);
set.add(item5);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* @param item0 an int item
* @param item1 an int item
* @param item2 an int item
* @param item3 an int item
* @param item4 an int item
* @param item5 an int item
* @param item6 an int item
* @return a new IntSet that holds the given items
*/
public static IntSet with (int item0, int item1, int item2, int item3, int item4, int item5, int item6) {
IntSet set = new IntSet(7);
set.add(item0);
set.add(item1);
set.add(item2);
set.add(item3);
set.add(item4);
set.add(item5);
set.add(item6);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* @param item0 an int item
* @param item1 an int item
* @param item2 an int item
* @param item3 an int item
* @param item4 an int item
* @param item5 an int item
* @param item6 an int item
* @return a new IntSet that holds the given items
*/
public static IntSet with (int item0, int item1, int item2, int item3, int item4, int item5, int item6, int item7) {
IntSet set = new IntSet(8);
set.add(item0);
set.add(item1);
set.add(item2);
set.add(item3);
set.add(item4);
set.add(item5);
set.add(item6);
set.add(item7);
return set;
}
/**
* Creates a new IntSet that holds only the given items, but can be resized.
* This overload will only be used when an array is supplied and the type of the
* items requested is the component type of the array, or if varargs are used and
* there are 9 or more arguments.
* @param varargs an int varargs or int array; remember that varargs allocate
* @return a new IntSet that holds the given items
*/
public static IntSet with (int... varargs) {
return new IntSet(varargs);
}
}