com.github.tommyettinger.random.distribution.BernoulliDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of juniper Show documentation
Show all versions of juniper Show documentation
Serializable pseudo-random number generators and distributions.
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.WhiskerRandom;
/**
* A one-parameter discrete distribution with integer range from 0 inclusive to 1 inclusive.
* @see Wikipedia's page on this distribution.
*/
public class BernoulliDistribution extends Distribution {
public String getTag() {
return "Bernoulli";
}
@Override
public BernoulliDistribution copy() {
return new BernoulliDistribution(generator.copy(), alpha);
}
private double alpha;
public double getAlpha() {
return alpha;
}
@Override
public double getParameterA() {
return alpha;
}
/**
* Uses a {@link WhiskerRandom}, alpha = 0.5 .
*/
public BernoulliDistribution() {
this(new WhiskerRandom(), 0.5);
}
/**
* Uses a {@link WhiskerRandom} and the given alpha.
*/
public BernoulliDistribution(double alpha) {
this(new WhiskerRandom(), alpha);
}
/**
* Uses the given EnhancedRandom directly. Uses the given alpha.
*/
public BernoulliDistribution(EnhancedRandom generator, double alpha)
{
this.generator = generator;
if(!setParameters(alpha, 0.0, 0.0))
throw new IllegalArgumentException("Given alpha is invalid.");
}
@Override
public double getMaximum() {
return 1.0;
}
@Override
public double getMean() {
return alpha;
}
@Override
public double getMedian() {
throw new UnsupportedOperationException("Median is undefined.");
}
@Override
public double getMinimum() {
return 0.0;
}
@Override
public double[] getMode() {
if(alpha > 1.0 - alpha)
return new double[]{ 1.0 };
return alpha < (1.0 - alpha) ? new double[] { 0.0 } : new double[] { 0.0, 1.0 };
}
@Override
public double getVariance() {
return (1.0 - alpha) * alpha;
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a alpha; must be greater than or equal to 0.0 and less than or equal to 1.0
* @param b ignored
* @param c ignored
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(a >= 0 && a <= 1.0) {
alpha = a;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, alpha);
}
public static double sample(EnhancedRandom generator, double alpha) {
return generator.nextDouble() < alpha ? 1.0 : 0.0;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy