com.github.tommyettinger.random.distribution.ContinuousUniformDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of juniper Show documentation
Show all versions of juniper Show documentation
Serializable pseudo-random number generators and distributions.
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.digital.MathTools;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.WhiskerRandom;
/**
* A two-parameter distribution with range between the given parameters, both inclusive.
* @see Wikipedia's page on this distribution.
*/
public class ContinuousUniformDistribution extends Distribution {
public String getTag() {
return "ContinuousUniform";
}
@Override
public ContinuousUniformDistribution copy() {
return new ContinuousUniformDistribution(generator.copy(), alpha, beta);
}
private double alpha;
private double beta;
public double getAlpha() {
return alpha;
}
public double getBeta() {
return beta;
}
@Override
public double getParameterA() {
return alpha;
}
@Override
public double getParameterB() {
return beta;
}
/**
* Uses a {@link WhiskerRandom}, alpha = 0.0, beta = 1.0 .
*/
public ContinuousUniformDistribution() {
this(new WhiskerRandom(), 0.0, 1.0);
}
/**
* Uses a {@link WhiskerRandom} and the given alpha and beta.
*/
public ContinuousUniformDistribution(double alpha, double beta) {
this(new WhiskerRandom(), alpha, beta);
}
/**
* Uses the given EnhancedRandom directly. Uses the given alpha and beta.
*/
public ContinuousUniformDistribution(EnhancedRandom generator, double alpha, double beta)
{
this.generator = generator;
if(!setParameters(alpha, beta, 0.0))
throw new IllegalArgumentException("Given alpha and/or beta are invalid.");
}
@Override
public double getMaximum() {
return beta;
}
@Override
public double getMean() {
return (alpha + beta) * 0.5;
}
@Override
public double getMedian() {
return (alpha + beta) * 0.5;
}
@Override
public double getMinimum() {
return alpha;
}
@Override
public double[] getMode() {
throw new UnsupportedOperationException("Mode is undefined.");
}
@Override
public double getVariance() {
return MathTools.square(beta - alpha) / 12.0;
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a alpha; should be less than or equal to beta
* @param b beta; should be greater than or equal to alpha
* @param c ignored
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(a <= b){
alpha = a;
beta = b;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, alpha, beta);
}
public static double sample(EnhancedRandom generator, double alpha, double beta) {
return generator.nextInclusiveDouble(alpha, beta);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy