com.github.tommyettinger.random.distribution.DiscreteUniformDistribution Maven / Gradle / Ivy
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.digital.MathTools;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.WhiskerRandom;
/**
* A two-parameter discrete distribution with integer range between the given parameters, both inclusive.
* @see Wikipedia's page on this distribution.
*/
public class DiscreteUniformDistribution extends Distribution {
public String getTag() {
return "DiscreteUniform";
}
@Override
public DiscreteUniformDistribution copy() {
return new DiscreteUniformDistribution(generator.copy(), alpha, beta);
}
private int alpha;
private int beta;
public int getAlpha() {
return alpha;
}
public int getBeta() {
return beta;
}
@Override
public double getParameterA() {
return alpha;
}
@Override
public double getParameterB() {
return beta;
}
/**
* Uses a {@link WhiskerRandom}, alpha = 0, beta = 1 .
*/
public DiscreteUniformDistribution() {
this(new WhiskerRandom(), 0, 1);
}
/**
* Uses a {@link WhiskerRandom} and the given alpha and beta.
*/
public DiscreteUniformDistribution(int alpha, int beta) {
this(new WhiskerRandom(), alpha, beta);
}
/**
* Uses the given EnhancedRandom directly. Uses the given alpha and beta.
*/
public DiscreteUniformDistribution(EnhancedRandom generator, int alpha, int beta)
{
this.generator = generator;
if(!setParameters(alpha, beta, 0.0))
throw new IllegalArgumentException("Given alpha and/or beta are invalid.");
}
@Override
public double getMaximum() {
return beta;
}
@Override
public double getMean() {
return (alpha + beta) * 0.5;
}
@Override
public double getMedian() {
return (alpha + beta) * 0.5;
}
@Override
public double getMinimum() {
return alpha;
}
@Override
public double[] getMode() {
throw new UnsupportedOperationException("Mode is undefined.");
}
@Override
public double getVariance() {
return (MathTools.square(beta - alpha + 1.0) - 1.0) / 12.0;
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a alpha; will be cast to int, and should be less than or equal to beta
* @param b beta; will be cast to int, and should be greater than or equal to alpha
* @param c ignored
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if((int)a <= (int)b){
alpha = (int)a;
beta = (int)b;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, alpha, beta);
}
public static double sample(EnhancedRandom generator, int alpha, int beta) {
return generator.nextLong(alpha, beta+1L);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy