All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.tommyettinger.random.distribution.KnobDistribution Maven / Gradle / Ivy

There is a newer version: 0.6.3
Show newest version
/*
 * Copyright (c) 2023 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

package com.github.tommyettinger.random.distribution;

import com.github.tommyettinger.digital.MathTools;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.WhiskerRandom;

/**
 * A three-parameter distribution with infinite range, which allows interpolating between a
 * {@link NormalDistribution normal distribution} and a {@link ContinuousUniformDistribution uniform distribution}.
 * The first two parameters control mu and sigma for the normal distribution, and also affect alpha and beta for
 * the uniform one (though differently). The amount of interpolation is the third parameter, called iota here.
 * 
* This provides an extra "knob" to slide between a flat uniform distribution and a central-biased normal one. */ public class KnobDistribution extends Distribution { public String getTag() { return "Knob"; } @Override public KnobDistribution copy() { return new KnobDistribution(generator.copy(), mu, sigma, iota); } private double mu; private double sigma; private double iota; public double getMu() { return mu; } public double getSigma() { return sigma; } public double getIota() { return iota; } @Override public double getParameterA() { return mu; } @Override public double getParameterB() { return sigma; } @Override public double getParameterC() { return iota; } /** * Uses a {@link WhiskerRandom}, mu = 0.0, sigma = 1.0, iota = 0.5 . */ public KnobDistribution() { this(new WhiskerRandom(), 0.0, 1.0, 0.5); } /** * Uses a {@link WhiskerRandom} and the given mu sigma, and iota. */ public KnobDistribution(double mu, double sigma, double iota) { this(new WhiskerRandom(), mu, sigma, iota); } /** * Uses the given EnhancedRandom directly. Uses the given mu, sigma, and iota. */ public KnobDistribution(EnhancedRandom generator, double mu, double sigma, double iota) { this.generator = generator; if(!setParameters(mu, sigma, iota)) throw new IllegalArgumentException("Given mu, sigma and/or iota are invalid."); } @Override public double getMaximum() { return Double.POSITIVE_INFINITY; } @Override public double getMean() { return mu; } @Override public double getMedian() { return mu; } @Override public double getMinimum() { return Double.NEGATIVE_INFINITY; } @Override public double[] getMode() { return new double[] { mu }; } @Override public double getVariance() { throw new UnsupportedOperationException("Variance is undefined."); } /** * Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false. * @param a mu; must not be NaN * @param b sigma; should be greater than 0.0 * @param c iota; must be between 0.0 and 1.0, both inclusive * @return true if the parameters given are valid and will be used */ @Override public boolean setParameters(double a, double b, double c) { if(!Double.isNaN(a) && b > 0.0 && c >= 0.0 && c <= 1.0){ mu = a; sigma = b; iota = c; return true; } return false; } @Override public double nextDouble() { return sample(generator, mu, sigma, iota); } public static double sample(EnhancedRandom generator, double mu, double sigma, double iota) { return MathTools.lerp(generator.nextInclusiveDouble(-sigma, sigma) + mu, generator.nextGaussian(mu, sigma), iota); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy