com.github.tommyettinger.random.distribution.LogCauchyDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of juniper Show documentation
Show all versions of juniper Show documentation
Serializable pseudo-random number generators and distributions.
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.WhiskerRandom;
/**
* A two-parameter distribution with range from 0 (exclusive) to positive infinity.
* This is mostly here because the shape of its graph is so strange; this could allow it to be useful for modeling
* especially unusual probabilities. Or for games, to really mess with attempts to figure out the program internals.
* @see Wikipedia's page on this distribution.
*/
public class LogCauchyDistribution extends Distribution {
public String getTag() {
return "LogCauchy";
}
@Override
public LogCauchyDistribution copy() {
return new LogCauchyDistribution(generator.copy(), mu, sigma);
}
private double mu;
private double sigma;
public double getMu() {
return mu;
}
public double getSigma() {
return sigma;
}
@Override
public double getParameterA() {
return mu;
}
@Override
public double getParameterB() {
return sigma;
}
/**
* Uses a {@link WhiskerRandom}, alpha = 0.0, sigma = 1.0 .
*/
public LogCauchyDistribution() {
this(new WhiskerRandom(), 0.0, 1.0);
}
/**
* Uses a {@link WhiskerRandom} and the given mu and sigma.
*/
public LogCauchyDistribution(double mu, double sigma) {
this(new WhiskerRandom(), mu, sigma);
}
/**
* Uses the given EnhancedRandom directly. Uses the given mu and sigma.
*/
public LogCauchyDistribution(EnhancedRandom generator, double mu, double sigma)
{
this.generator = generator;
if(!setParameters(mu, sigma, 0.0))
throw new IllegalArgumentException("Given mu and/or sigma are invalid.");
}
@Override
public double getMaximum() {
return Double.POSITIVE_INFINITY;
}
@Override
public double getMean() {
return Double.POSITIVE_INFINITY;
}
@Override
public double getMedian() {
return Math.exp(mu);
}
@Override
public double getMinimum() {
return 0.0;
}
@Override
public double[] getMode() {
throw new UnsupportedOperationException("Mode is undefined.");
}
@Override
public double getVariance() {
return Double.POSITIVE_INFINITY;
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a mu; must not be NaN
* @param b sigma; should be greater than 0.0
* @param c ignored
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(!Double.isNaN(a) && b > 0.0){
mu = a;
sigma = b;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, mu, sigma);
}
public static double sample(EnhancedRandom generator, double mu, double sigma) {
return Math.exp(CauchyDistribution.sample(generator, mu, sigma));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy