All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.tommyettinger.random.distribution.LumpDistribution Maven / Gradle / Ivy

There is a newer version: 0.6.3
Show newest version
/*
 * Copyright (c) 2023 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

package com.github.tommyettinger.random.distribution;

import com.github.tommyettinger.digital.TrigTools;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.WhiskerRandom;

/**
 * A two-parameter distribution with range between 0 inclusive and 1 exclusive.
 * Currently, the values for mean, median, mode, and variance are unknown; if someone wants to contribute a way to
 * calculate them, that would be appreciated.
 * 
* The idea for this was first implemented in SquidLib * as TweakRNG. This has changed and no longer has 4 spikes, but still acts the same with how it can be tweaked. */ public class LumpDistribution extends Distribution { public String getTag() { return "Lump"; } @Override public LumpDistribution copy() { return new LumpDistribution(generator.copy(), alpha, beta); } private double alpha; private double beta; /** * Affects whether returned values will be lower (for lower alpha) or higher (for higher alpha). * @return the A parameter */ public double getAlpha() { return alpha; } /** * Affects extremity vs. centrality; higher values favor extremes. * @return the B parameter */ public double getBeta() { return beta; } @Override public double getParameterA() { return alpha; } @Override public double getParameterB() { return beta; } /** * Uses a {@link WhiskerRandom}, alpha = 0.0, beta = 0.25 . */ public LumpDistribution() { this(new WhiskerRandom(), 0.0, 0.25); } /** * Uses a {@link WhiskerRandom} and the given alpha and beta. */ public LumpDistribution(double alpha, double beta) { this(new WhiskerRandom(), alpha, beta); } /** * Uses the given EnhancedRandom directly. Uses the given alpha and beta. */ public LumpDistribution(EnhancedRandom generator, double alpha, double beta) { this.generator = generator; if(!setParameters(alpha, beta, 0.0)) throw new IllegalArgumentException("Given alpha and/or beta are invalid."); } @Override public double getMaximum() { return 1.0; } @Override public double getMean() { throw new UnsupportedOperationException("Mean is not supported."); } @Override public double getMedian() { throw new UnsupportedOperationException("Median is not supported."); } @Override public double getMinimum() { return 0.0; } @Override public double[] getMode() { throw new UnsupportedOperationException("Mode is not supported."); } @Override public double getVariance() { throw new UnsupportedOperationException("Variance is not supported."); } /** * Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false. * @param a alpha; cannot be NaN, and is usually near 0 * @param b beta; cannot be NaN, and is usually near 0 * @param c ignored * @return true if the parameters given are valid and will be used */ @Override public boolean setParameters(double a, double b, double c) { if(a == a && b == b){ alpha = a; beta = b; return true; } return false; } @Override public double nextDouble() { return sample(generator, alpha, beta); } public static double sample(EnhancedRandom generator, double alpha, double beta) { return TrigTools.atan2Turns(generator.nextGaussian() - alpha, generator.nextGaussian() + beta); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy