All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.tommyettinger.random.distribution.ZipfianDistribution Maven / Gradle / Ivy

There is a newer version: 0.6.3
Show newest version
/*
 * Copyright (c) 2023 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

package com.github.tommyettinger.random.distribution;

import com.github.tommyettinger.digital.MathTools;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.WhiskerRandom;

/**
 * A discrete two-parameter distribution with range from integer 1 to {@link #alpha}.
 * 
* This gets some formulas from dirtyzipf, which is MIT-licensed. * It doesn't share any code. * See Wikipedia's page on the Zipfian distribution. */ public class ZipfianDistribution extends Distribution { public String getTag() { return "Zipfian"; } @Override public ZipfianDistribution copy() { return new ZipfianDistribution(generator.copy(), (long)alpha, skew, zeta); } private double alpha; private double skew; private double zeta, zetaTwoSkew; public double getAlpha() { return alpha; } public double getSkew() { return skew; } public double getZeta() { return zeta; } public void setZeta(double zeta) { this.zeta = zeta; } @Override public double getParameterA() { return alpha; } @Override public double getParameterB() { return skew; } /** * Uses a {@link WhiskerRandom}, alpha = 16, skew = 0.5 . */ public ZipfianDistribution() { this(new WhiskerRandom(), 16, 0.5); } /** * Uses a {@link WhiskerRandom} and the given alpha and skew. */ public ZipfianDistribution(long alpha, double skew) { this(new WhiskerRandom(), alpha, skew); } /** * Uses the given EnhancedRandom directly. Uses the given alpha and skew. */ public ZipfianDistribution(EnhancedRandom generator, long alpha, double skew) { this.generator = generator; if(!setParameters(alpha, skew, 0.0)) throw new IllegalArgumentException("Given alpha and/or skew are invalid."); } /** * Uses the given EnhancedRandom directly. Uses the given alpha, skew, and precalculated zeta. * Because this does not calculate zeta directly, it may be faster if you already know {@link #getZeta()}. */ public ZipfianDistribution(EnhancedRandom generator, long alpha, double skew, double zeta) { this.generator = generator; if(!setParameters(alpha, skew, -1.0)) throw new IllegalArgumentException("Given alpha and/or skew are invalid."); else this.zeta = zeta; } /** * Gets the nth generalized harmonic number (with n equal to limit) with the given s (as skew). * See Harmonic numbers on Wikipedia. * @param limit N in the formula (a long), or how many values are in the sequence this processes * @param skew s in the formula (a non-negative double), or how skewed this is away from Zipf's Law * @return the Nth generalized harmonic number with the given skew, where N equals limit */ public static double harmonic(long limit, double skew) { double result = 1.0; for (long i = 2L; i <= limit; i++) { result += Math.pow(1.0/i, skew); } return result; } @Override public double getMaximum() { return alpha; } @Override public double getMean() { if (skew > 1.0) { return harmonic((long) alpha, skew - 1.0) / zeta; } throw new UnsupportedOperationException("Mean cannot be determined for the given parameters."); } @Override public double getMedian() { throw new UnsupportedOperationException("Median cannot be determined."); } @Override public double getMinimum() { return 1; } @Override public double[] getMode() { return new double[]{ 1.0 }; } @Override public double getVariance() { if(skew > 2.0) { return harmonic((long)alpha, skew - 2.0) / zeta - MathTools.square(harmonic((long)alpha, skew - 1.0)) / (zeta * zeta); } throw new UnsupportedOperationException("Variance cannot be determined for the given parameters."); } /** * Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false. * Note, if you pass a negative value for {@code c}, you must call {@link #setZeta(double)} and provide a value for * zeta before you generate any doubles. Typically, when {@code a} is very large, zeta takes a long time to process, * so you might want to calculate it once, store the result of {@link #getZeta()}, and set it on later runs after * passing a negative {@code c} here. * @param a alpha; should be an int or long greater than 0 * @param b skew; should be greater than or equal to 0.0 and less than 1.0 * @param c if negative, the (challenging) zeta value will not be calculated here; otherwise ignored * @return true if the parameters given are valid and will be used */ @Override public boolean setParameters(double a, double b, double c) { if(a >= 1.0 && b >= 0.0 && b < 1.0){ alpha = (long) a; skew = b; if(c != c || c >= 0) { // if c is NaN or non-negative, then this calculates zeta zeta = harmonic((long)alpha, skew); } zetaTwoSkew = 1.0 + Math.pow(0.5, skew); return true; } return false; } @Override public double nextDouble() { return sample(generator, alpha, skew, zeta, zetaTwoSkew); } public static double sample(EnhancedRandom generator, double alpha, double skew, double zeta, double zetaTwoSkew) { double over = 1.0 / (1.0 - skew); double eta = (1 - Math.pow(2.0 / alpha, 1.0 - skew)) / (1 - zetaTwoSkew / zeta); double u = generator.nextExclusiveDouble(); double uz = u * zeta; if(uz < 1.0) return 1; if(uz < zetaTwoSkew) return 2; return 1 + (alpha * Math.pow(eta * u - eta + 1, over)); } public static double sample(EnhancedRandom generator, long alpha, double skew, double zeta) { double over = 1.0 / (1.0 - skew); double zetaTwoSkew = 1.0 + Math.pow(0.5, skew); double eta = (1 - Math.pow(2.0 / alpha, 1.0 - skew)) / (1 - zetaTwoSkew / zeta); double u = generator.nextExclusiveDouble(); double uz = u * zeta; if(uz < 1.0) return 1; if(uz < zetaTwoSkew) return 2; return 1 + (alpha * Math.pow(eta * u - eta + 1, over)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy