![JAR search and dependency download from the Maven repository](/logo.png)
com.github.tommyettinger.random.distribution.BinomialDistribution Maven / Gradle / Ivy
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.AceRandom;
/**
* A two-parameter discrete distribution with integer range from 0 (inclusive) to beta (inclusive).
* @see Wikipedia's page on this distribution.
*/
public class BinomialDistribution extends Distribution {
public String getTag() {
return "Binomial";
}
@Override
public BinomialDistribution copy() {
return new BinomialDistribution(generator.copy(), alpha, beta);
}
private double alpha;
private int beta;
public double getAlpha() {
return alpha;
}
public int getBeta() {
return beta;
}
@Override
public double getParameterA() {
return alpha;
}
@Override
public double getParameterB() {
return beta;
}
/**
* Uses an {@link AceRandom}, alpha = 0.5, beta = 1 .
*/
public BinomialDistribution() {
this(new AceRandom(), 0.5, 1);
}
/**
* Uses an {@link AceRandom} and the given beta and alpha.
*/
public BinomialDistribution(double alpha, int beta) {
this(new AceRandom(), alpha, beta);
}
/**
* Uses the given EnhancedRandom directly. Uses the given beta and alpha.
*/
public BinomialDistribution(EnhancedRandom generator, double alpha, int beta)
{
this.generator = generator;
if(!setParameters(alpha, beta, 0.0))
throw new IllegalArgumentException("Given alpha and/or beta are invalid.");
}
@Override
public double getMaximum() {
return beta;
}
@Override
public double getMean() {
return beta * alpha;
}
@Override
public double getMedian() {
throw new UnsupportedOperationException("Median is undefined.");
}
@Override
public double getMinimum() {
return 0.0;
}
@Override
public double[] getMode() {
return new double[] { Math.floor(alpha * (beta + 1.0)) };
}
@Override
public double getVariance() {
return alpha * (1.0 - alpha) * beta;
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a alpha; should be greater than or equal to 0.0 and less than or equal to 1.0
* @param b beta; will be cast to an int, and should be greater or equal to 0
* @param c ignored
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(a >= 0.0 && a <= 1.0 && (int)b >= 0.0){
alpha = a;
beta = (int)b;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, alpha, beta);
}
public static double sample(EnhancedRandom generator, double alpha, int beta) {
double successes = 0;
for (int i = 0; i < beta; i++)
{
if (generator.nextExclusiveDouble() < alpha)
{
successes++;
}
}
return successes;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy