![JAR search and dependency download from the Maven repository](/logo.png)
com.github.tommyettinger.random.distribution.GammaDistribution Maven / Gradle / Ivy
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.digital.MathTools;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.AceRandom;
/**
* A two-parameter distribution with range from 0 exclusive to positive infinity.
* @see Wikipedia's page on this distribution.
*/
public class GammaDistribution extends Distribution {
public String getTag() {
return "Gamma";
}
@Override
public GammaDistribution copy() {
return new GammaDistribution(generator.copy(), alpha, beta);
}
private double alpha;
private double beta;
public double getAlpha() {
return alpha;
}
public double getBeta() {
return beta;
}
@Override
public double getParameterA() {
return alpha;
}
@Override
public double getParameterB() {
return beta;
}
/**
* Uses an {@link AceRandom}, alpha = 1.0, beta = 1.0 .
*/
public GammaDistribution() {
this(new AceRandom(), 1.0, 1.0);
}
/**
* Uses an {@link AceRandom} and the given alpha and beta.
*/
public GammaDistribution(double alpha, double beta) {
this(new AceRandom(), alpha, beta);
}
/**
* Uses the given EnhancedRandom directly. Uses the given alpha and beta.
*/
public GammaDistribution(EnhancedRandom generator, double alpha, double beta)
{
this.generator = generator;
if(!setParameters(alpha, beta, 0.0))
throw new IllegalArgumentException("Given alpha and/or beta are invalid.");
}
@Override
public double getMaximum() {
return Double.POSITIVE_INFINITY;
}
@Override
public double getMean() {
return alpha / beta;
}
@Override
public double getMedian() {
throw new UnsupportedOperationException("Median is undefined.");
}
@Override
public double getMinimum() {
return 0.0;
}
@Override
public double[] getMode() {
if (alpha >= 1.0)
return new double[] { (alpha - 1.0) / beta };
throw new UnsupportedOperationException("Mode cannot be determined for the given parameters.");
}
@Override
public double getVariance() {
return alpha / (beta * beta);
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a alpha; should be greater than 0.0
* @param b beta; should be greater than 0.0
* @param c ignored
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(a > 0.0 && b > 0.0){
alpha = a;
beta = b;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, alpha, beta);
}
public static double sample(EnhancedRandom generator, double alpha, double beta) {
double oalpha = alpha;
if (alpha < 1.0)
{
alpha += 1.0;
}
double a1 = alpha - 1.0 / 3.0;
double a2 = 1.0 / Math.sqrt(9.0 * a1);
double u, v, x;
do
{
do
{
x = NormalDistribution.sample(generator, 0.0, 1.0);
v = 1.0 + a2 * x;
} while (v <= 0.0);
v = v * v * v;
u = generator.nextDouble();
} while (u > (1.0 - 0.331 * MathTools.square(x *= x)) && Math.log(u) > (0.5 * x + a1 * (1.0 - v + Math.log(v))));
if (MathTools.isEqual(alpha, oalpha, 0x1p-24))
return a1 * v / beta;
return Math.pow(generator.nextExclusiveDouble(), 1.0 / oalpha) * a1 * v / beta;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy