com.github.tommyettinger.random.distribution.TriangularDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of juniper Show documentation
Show all versions of juniper Show documentation
Serializable pseudo-random number generators and distributions.
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.AceRandom;
/**
* A three-parameter distribution with range from between the first two parameters, alpha inclusive, beta inclusive.
* @see Wikipedia's page on this distribution.
*/
public class TriangularDistribution extends Distribution {
public String getTag() {
return "Triangular";
}
@Override
public TriangularDistribution copy() {
return new TriangularDistribution(generator.copy(), alpha, beta, gamma);
}
private double alpha;
private double beta;
private double gamma;
public double getAlpha() {
return alpha;
}
public double getBeta() {
return beta;
}
public double getGamma() {
return gamma;
}
@Override
public double getParameterA() {
return alpha;
}
@Override
public double getParameterB() {
return beta;
}
@Override
public double getParameterC() {
return gamma;
}
/**
* Uses an {@link AceRandom}, alpha = 0.0, beta = 1.0, gamma = 0.5 .
*/
public TriangularDistribution() {
this(new AceRandom(), 0.0, 1.0, 0.5);
}
/**
* Uses an {@link AceRandom} and the given alpha, beta, and gamma.
*/
public TriangularDistribution(double alpha, double beta, double gamma) {
this(new AceRandom(), alpha, beta, gamma);
}
/**
* Uses the given EnhancedRandom directly. Uses the given alpha, beta, and gamma.
*/
public TriangularDistribution(EnhancedRandom generator, double alpha, double beta, double gamma)
{
this.generator = generator;
if(!setParameters(alpha, beta, gamma))
throw new IllegalArgumentException("Given alpha, beta, and/or gamma are invalid.");
}
@Override
public double getMaximum() {
return beta;
}
@Override
public double getMean() {
return (alpha + beta + gamma) / 3.0;
}
@Override
public double getMedian() {
if (gamma >= (beta - alpha) * 0.5)
{
return alpha + (Math.sqrt((beta - alpha) * (gamma - alpha)) / Math.sqrt(2.0));
}
return beta - (Math.sqrt((beta - alpha) * (beta - gamma)) / Math.sqrt(2.0));
}
@Override
public double getMinimum() {
return alpha;
}
@Override
public double[] getMode() {
return new double[] { gamma };
}
@Override
public double getVariance() {
return (alpha * alpha + beta * beta + gamma * gamma - alpha * beta - alpha * gamma - beta * gamma) / 18.0;
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a alpha; should be less than beta and less than or equal to gamma
* @param b beta; should be greater than alpha and greater than or equal to gamma
* @param c gamma; should be greater than or equal to alpha and less than or equal to beta
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(a < b && a <= c && c <= b){
alpha = a;
beta = b;
gamma = c;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, alpha, beta, gamma);
}
public static double sample(EnhancedRandom generator, double alpha, double beta, double gamma) {
double helper1 = gamma - alpha;
double helper2 = beta - alpha;
double helper3 = Math.sqrt(helper1 * helper2);
double helper4 = Math.sqrt(beta - gamma);
double genNum = generator.nextDouble();
if (genNum <= helper1 / helper2)
{
return alpha + Math.sqrt(genNum) * helper3;
}
return beta - Math.sqrt(genNum * helper2 - helper1) * helper4;
}
}