com.github.tommyettinger.random.TupleQuasiRandom Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of juniper Show documentation
Show all versions of juniper Show documentation
Serializable pseudo-random number generators and distributions.
The newest version!
/*
* Copyright (c) 2022-2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random;
import com.github.tommyettinger.digital.Distributor;
import com.github.tommyettinger.digital.Hasher;
import com.github.tommyettinger.digital.MathTools;
import java.util.Random;
/**
* Not actually a pseudo-random number generator, but a quasi-random number generator, this is a fairly simple
* way to produce values that have some advantages of quasi-random numbers, but works better in some cases than
* {@link GoldenQuasiRandom}. GoldenQuasiRandom doesn't produce actually quasi-random numbers when generating Gaussian
* values; instead it produces pseudo-random numbers using an algorithm like {@link DistinctRandom}. If
* GoldenQuasiRandom did use its normal algorithm, it would cause severe artifacts when a tuple of Gaussian values was
* obtained -- while this class is similar in many ways to GoldenQuasiRandom, it doesn't have this tuple issue, and it
* does still produce quasi-random Gaussian values, more or less. This has a period of 2 to the 64.
* It does not pass any tests for randomness. This is simply a counter with an increment of 1, that
* uses the counter times one of 1024 possible multipliers, which this cycles through. The multipliers are the first
* 1024 items in {@link MathTools#GOLDEN_LONGS}.
*
* Useful traits of this generator are that all values are permitted for the main state, that it converges quickly when
* retrieving tuples of normal-distributed numbers, and that you can {@link #skip(long)} the state forwards or backwards
* in constant time.
*
* This class is an {@link EnhancedRandom} from juniper and is also a JDK {@link Random} as a result.
*
* This doesn't randomize the seed when given one with {@link #setSeed(long)}, and it doesn't do anything else to
* randomize the output, so sequential seeds will produce extremely similar sequences. You can randomize sequential
* seeds using something like {@link Hasher#randomize3(long)}, if you want random starting points.
*
* This implements all methods from {@link EnhancedRandom}, including the optional {@link #skip(long)} and
* {@link #previousLong()} methods.
*/
public class TupleQuasiRandom extends EnhancedRandom {
/**
* The main state variable, as a long; can be any {@code long}.
*/
public long state;
private static final long MASK = 1023L;
private static final int shift = 10;
/**
* Creates a new GoldenQuasiRandom with a random state.
*/
public TupleQuasiRandom() {
this(EnhancedRandom.seedFromMath());
}
/**
* Creates a new GoldenQuasiRandom with the given state; all {@code long} values are permitted.
*
* @param state any {@code long} value
*/
public TupleQuasiRandom(long state) {
super(state);
this.state = state;
}
@Override
public String getTag() {
return "TuQR";
}
/**
* This has one long state.
*
* @return 1 (one)
*/
@Override
public int getStateCount () {
return 1;
}
/**
* This gets the main state's exact value, ignoring selection.
*
* @param selection ignored
* @return the main state's exact value
*/
@Override
public long getSelectedState (int selection) {
return state;
}
/**
* This always sets the main state, which can be any long value.
*
* @param selection ignored
* @param value the exact value to use for the main state; all longs are valid for the main state
*/
@Override
public void setSelectedState (int selection, long value) {
state = value;
}
/**
* Sets the only state, which can be given any long value; this seed value
* will not be altered. Equivalent to {@link #setSelectedState(int, long)}
* with any selection and {@code seed} passed as the {@code value}.
*
* @param seed the exact value to use for the state; all longs are valid
*/
@Override
public void setSeed (long seed) {
state = seed;
}
/**
* Gets the current state; it's already public, but I guess this could still
* be useful. The state can be any {@code long}.
*
* @return the current state, as a long
*/
public long getState () {
return state;
}
/**
* Sets the main state variable to the given {@code state}.
*
* @param state the long value to use for the state variable
*/
@Override
public void setState (long state) {
this.state = state;
}
@Override
public long nextLong () {
return (((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]);
}
/**
* Skips the state forward or backwards by the given {@code advance}, then returns the result of {@link #nextLong()}
* at the same point in the sequence. If advance is 1, this is equivalent to nextLong(). If advance is 0, this
* returns the same {@code long} as the previous call to the generator (if it called nextLong()), and doesn't change
* the state. If advance is -1, this moves the state backwards and produces the {@code long} before the last one
* generated by nextLong(). More positive numbers move the state further ahead, and more negative numbers move the
* state further behind; all of these take constant time.
*
* @param advance how many steps to advance the state before generating a {@code long}
* @return a random {@code long} by the same algorithm as {@link #nextLong()}, using the appropriately-advanced state
*/
@Override
public long skip (long advance) {
return (((state += advance * 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]);
}
@Override
public long previousLong () {
final long result = ((state >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]);
state -= 0x9E3779B97F4A7C15L;
return result;
}
@Override
public int next (int bits) {
return (int)((((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]) >>> 64 - bits);
}
@Override
public int nextInt() {
return (int)((((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]) >>> 32);
}
@Override
public int nextInt(int bound) {
return (int)(bound * ((((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]) >>> 32) >> 32) & ~(bound >> 31);
}
@Override
public int nextSignedInt(int outerBound) {
outerBound = (int)(outerBound * ((((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]) >>> 32) >> 32);
return outerBound + (outerBound >>> 31);
}
@Override
public double nextExclusiveDouble () {
final double n = ((((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]) >>> 11) * 0x1p-53;
return n == 0.0 ? 0x1.0p-54 : n;
}
@Override
public double nextExclusiveSignedDouble() {
final long bits = (((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]);
final double n = (bits >>> 11) * 0x1p-53;
return Math.copySign(n == 0.0 ? 0x1.0p-54 : n, bits << 54);
}
@Override
public float nextExclusiveFloat() {
final float n = ((((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]) >>> 40) * 0x1p-24f;
return n == 0f ? 0x1p-25f : n;
}
@Override
public float nextExclusiveSignedFloat() {
final long bits = (((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]);
final float n = (bits >>> 40) * 0x1p-24f;
return Math.copySign(n == 0f ? 0x1p-25f : n, bits << 25);
}
@Override
public double nextGaussian() {
// return super.nextGaussian();
// return probit(nextDouble());
// return probit(((state & 0x1FFF_FFFFF_FFFFFL) ^ nextLong() >>> 11) * 0x1p-53);
// return Ziggurat.normal(Hasher.randomize3(state += 0x9E3779B97F4A7C15L));
return Distributor.linearNormal(((state += 0x9E3779B97F4A7C15L) >>> shift) * MathTools.GOLDEN_LONGS[(int)(state & MASK)]);
}
@Override
public TupleQuasiRandom copy () {
return new TupleQuasiRandom(state);
}
@Override
public boolean equals (Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
TupleQuasiRandom that = (TupleQuasiRandom)o;
return state == that.state;
}
@Override
public String toString () {
return "TupleQuasiRandom{state=" + (state) + "L}";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy