com.github.tommyettinger.random.distribution.ArcsineDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of juniper Show documentation
Show all versions of juniper Show documentation
Serializable pseudo-random number generators and distributions.
The newest version!
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.AceRandom;
/**
* A two-parameter distribution with range from 0 to 1, both exclusive.
* This is a special case of the {@link BetaDistribution}, and has also been called a "Bathtub" distribution because of
* its steep bias towards the edges of its range, and low bias towards the center of the range.
* @see Wikipedia's page on this distribution.
*/
public class ArcsineDistribution extends Distribution {
public String getTag() {
return "Arcsine";
}
@Override
public ArcsineDistribution copy() {
return new ArcsineDistribution(generator.copy(), alpha, beta);
}
private double alpha;
private double beta;
public double getAlpha() {
return alpha;
}
public double getBeta() {
return beta;
}
@Override
public double getParameterA() {
return alpha;
}
@Override
public double getParameterB() {
return beta;
}
/**
* Uses an {@link AceRandom}, alpha = 0.0, beta = 1.0 .
*/
public ArcsineDistribution() {
this(new AceRandom(), 0.0, 1.0);
}
/**
* Uses an {@link AceRandom} and the given alpha and beta.
*/
public ArcsineDistribution(double alpha, double beta) {
this(new AceRandom(), alpha, beta);
}
/**
* Uses the given EnhancedRandom directly. Uses the given alpha and beta.
*/
public ArcsineDistribution(EnhancedRandom generator, double alpha, double beta)
{
this.generator = generator;
if(!setParameters(alpha, beta, 0.0))
throw new IllegalArgumentException("Given alpha and/or beta are invalid.");
}
@Override
public double getMaximum() {
return beta;
}
@Override
public double getMean() {
return 0.5 * (alpha + beta);
}
@Override
public double getMedian() {
return 0.5 * (alpha + beta);
}
@Override
public double getMinimum() {
return alpha;
}
@Override
public double[] getMode() {
return new double[]{alpha, beta};
}
@Override
public double getVariance() {
return (beta - alpha) * (beta - alpha) * 0.125;
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a alpha; the lower bound of the range, which must be less than b (beta)
* @param b beta; the upper bound of the range, which must be greater than a (alpha)
* @param c ignored
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(a < b){
alpha = a;
beta = b;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, alpha, beta);
}
public static double sample(EnhancedRandom generator, double alpha, double beta) {
double s = sinQuarterTurns(generator.nextExclusiveDouble());
return alpha + (beta - alpha) * s * s;
}
/**
* A variation on {@link Math#sin(double)} that takes its input as a fraction of a quarter-turn instead of in
* radians; one quarter-turn is equal to 90 degrees or 0.5*PI radians.
*
* The technique for sine approximation is mostly from
* This Stack Exchange answer by WimC.
* Changes have been made to accelerate wrapping from any double to the valid input range.
* @param quarterTurns an angle as a fraction of a quarter-turn as a double, with 0.5 here equivalent to PI/8.0 radians in {@link Math#sin(double)}
* @return the sine of the given angle, as a double between -1.0 and 1.0 (both inclusive)
*/
private static double sinQuarterTurns(double quarterTurns)
{
// quarterTurns *= 4.0; // not needed for this specific case
// final long floor = ((long) Math.floor(quarterTurns)) & -2L;
// quarterTurns -= floor;
// quarterTurns *= 2.0 - quarterTurns;
// return quarterTurns * (-0.775 - 0.225 * quarterTurns) * ((floor & 2L) - 1L);
// quarterTurns *= 4.0; // not needed for this specific case
final long ceil = (long) Math.ceil(quarterTurns) & -2L;
quarterTurns -= ceil;
final double x2 = quarterTurns * quarterTurns, x3 = quarterTurns * x2;
return (((11 * quarterTurns - 3 * x3) / (7 + x2)) * (1 - (ceil & 2)));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy