All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.tommyettinger.random.distribution.Distribution Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2023 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

package com.github.tommyettinger.random.distribution;

import com.github.tommyettinger.digital.Base;
import com.github.tommyettinger.random.Deserializer;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.GwtIncompatible;

import java.io.Externalizable;
import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;

/**
 * The parent (abstract) class for all distributions. This has up to three parameters (just called A, B, and C), which
 * can be doubles or ints (by using a double and casting it to an int). It can provide the values for various properties
 * of the distribution, such as minimum, maximum, and mean, calculated for the current parameters. You get distributed
 * values from this with {@link #nextDouble()}.
 */
public abstract class Distribution {
    public Distribution() {
    }
    /**
     * An EnhancedRandom generator from this library to use.
     */
    public EnhancedRandom generator;
    /**
     * Gets the maximum possible value of distributed random numbers.
     * @return the maximum possible value of distributed random numbers
     */
    public abstract double getMaximum();

    /**
     * Gets the mean of distributed random numbers.
     * @return the mean of distributed random numbers
     */
    public abstract double getMean();

    /**
     * Gets the median of distributed random numbers.
     * @return the median of distributed random numbers
     */
    public abstract double getMedian();

    /**
     * Gets the minimum possible value of distributed random numbers.
     * @return the minimum possible value of distributed random numbers
     */
    public abstract double getMinimum();

    /**
     * Gets the mode(s) of distributed random numbers.
     * @return the mode(s) of distributed random numbers
     */
    public abstract double[] getMode();

    /**
     * Gets the variance of distributed random numbers.
     * @return the variance of distributed random numbers
     */
    public abstract double getVariance();

    /**
     * Validates, and if all correct, sets up to 3 parameters to this distribution.
     * If this distribution has fewer than 3 parameters, later arguments are ignored.
     * @param a will be used to set parameter A
     * @param b will be used to set parameter B
     * @param c will be used to set parameter C
     * @return true if the parameters are valid and are used now; false if they were not changed
     */
    public abstract boolean setParameters(double a, double b, double c);

    /**
     * Generates a double using this distribution.
     * @return a distributed double
     */
    public abstract double nextDouble();

    /**
     * Gets the tag used to identify this type of Distribution, as a String. This tag should be unique. Unlike the
     * tags for EnhancedRandom types, the names here can vary in length.
     * @return a unique String identifier for this type of Distribution; must be non-null, can be any non-zero length
     */
    public abstract String getTag();

    /**
     * Gets the value of parameter "A" as a double. This corresponds to parameter "A" in
     * {@link #setParameters(double, double, double)}; it is usually called by some other name in the generator, and may
     * not be stored as a double internally.
     * 
* This defaults to always returning {@link Double#NaN}, but any parameters a distribution actually uses should be * overridden to return the actual parameter, which is almost certainly not going to be NaN. If a getParameter * method returns NaN, you can generally safely assume that the parameter is not used by this distribution. * @return the value of parameter "A" as a double. */ public double getParameterA() { return Double.NaN; } /** * Gets the value of parameter "B" as a double. This corresponds to parameter "B" in * {@link #setParameters(double, double, double)}; it is usually called by some other name in the generator, and may * not be stored as a double internally. *
* This defaults to always returning {@link Double#NaN}, but any parameters a distribution actually uses should be * overridden to return the actual parameter, which is almost certainly not going to be NaN. If a getParameter * method returns NaN, you can generally safely assume that the parameter is not used by this distribution. * @return the value of parameter "B" as a double. */ public double getParameterB() { return Double.NaN; } /** * Gets the value of parameter "C" as a double. This corresponds to parameter "C" in * {@link #setParameters(double, double, double)}; it is usually called by some other name in the generator, and may * not be stored as a double internally. *
* This defaults to always returning {@link Double#NaN}, but any parameters a distribution actually uses should be * overridden to return the actual parameter, which is almost certainly not going to be NaN. If a getParameter * method returns NaN, you can generally safely assume that the parameter is not used by this distribution. * @return the value of parameter "C" as a double. */ public double getParameterC() { return Double.NaN; } /** * Returns an exact copy of this Distribution, with the same parameters and a copy of the generator. * @return an exact copy of this Distribution */ public abstract Distribution copy(); /** * Serializes the current state of this Distribution to a String that can be used by * {@link #stringDeserialize(String)} to load this state at another time. This always uses * {@link Base#BASE16} for its conversions. * @return a String storing all data from the Distribution part of this generator */ public String stringSerialize() { return stringSerialize(Base.BASE16); } /** * Serializes the current generator and parameters of this Distribution to a String that can be used by * {@link #stringDeserialize(String)} to load this Distribution at another time. * @param base which Base to use, from the "digital" library, such as {@link Base#BASE10} * @return a String storing the current generator and parameters of this Distribution */ public String stringSerialize(Base base) { StringBuilder ser = new StringBuilder(getTag()).append('~'); ser.append(generator.stringSerialize(base)); base.appendSigned(ser, getParameterA()); ser.append('`'); base.appendSigned(ser, getParameterB()); ser.append('`'); base.appendSigned(ser, getParameterC()); ser.append('`'); return ser.toString(); } /** * Given a String in the format produced by {@link #stringSerialize()}, this will attempt to set this Distribution * object to match the state in the serialized data. This only works if this Distribution is the same * implementation that was serialized. Always uses {@link Base#BASE16}. Returns this Distribution, after possibly * changing its parameters and generator. The implementation for the generator can change, so the reference also * changes whenever this is called. * @param data a String probably produced by {@link #stringSerialize()} * @return this, after setting its state */ public Distribution stringDeserialize(String data) { return stringDeserialize(data, Base.BASE16); } /** * Given a String in the format produced by {@link #stringSerialize(Base)}, and the same {@link Base} used by * the serialization, this will attempt to set this Distribution object to match the state in the serialized * data. This only works if this Distribution is the same implementation that was serialized, and also needs * the Bases to be identical. Returns this Distribution, after possibly changing its parameters and generator. * The implementation for the generator can change, so the reference also changes whenever this is called. * @param data a String probably produced by {@link #stringSerialize(Base)} * @param base which Base to use, from the "digital" library, such as {@link Base#BASE10} * @return this, after setting its state */ public Distribution stringDeserialize(String data, Base base) { int idx = data.indexOf('~') + 1; generator = Deserializer.deserialize(data.substring(idx, idx = data.indexOf('`', data.indexOf('`', idx + 1) + 1) + 1), base); setParameters(base.readDoubleExact(data, idx, (idx = data.indexOf('`', idx + 1))), base.readDoubleExact(data, idx + 1, (idx = data.indexOf('`', idx + 1))), base.readDoubleExact(data, idx + 1, (data.indexOf('`', idx + 1)))); return this; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Distribution that = (Distribution) o; if(!EnhancedRandom.areEqual(generator, that.generator)) return false; double p = getParameterA(), t = that.getParameterA(); if(!Double.isNaN(p) && !Double.isNaN(t) && p != t) return false; p = getParameterB(); t = that.getParameterB(); if(!Double.isNaN(p) && !Double.isNaN(t) && p != t) return false; p = getParameterC(); t = that.getParameterC(); return Double.isNaN(p) || Double.isNaN(t) || p == t; } @Override public String toString() { double a = getParameterA(), b = getParameterB(), c = getParameterC(); return "Distribution{" + "generator=" + generator + (a != a ? "" : ", parameterA=" + getParameterA()) + (b != b ? "" : ", parameterB=" + getParameterB()) + (c != c ? "" : ", parameterC=" + getParameterC()) + '}'; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy