com.github.tommyettinger.random.distribution.KnobDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of juniper Show documentation
Show all versions of juniper Show documentation
Serializable pseudo-random number generators and distributions.
The newest version!
/*
* Copyright (c) 2023 See AUTHORS file.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package com.github.tommyettinger.random.distribution;
import com.github.tommyettinger.digital.MathTools;
import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.AceRandom;
/**
* A three-parameter distribution with infinite range, which allows interpolating between a
* {@link NormalDistribution normal distribution} and a {@link ContinuousUniformDistribution uniform distribution}.
* The first two parameters control mu and sigma for the normal distribution, and also affect alpha and beta for
* the uniform one (though differently). The amount of interpolation is the third parameter, called iota here.
*
* This provides an extra "knob" to slide between a flat uniform distribution and a central-biased normal one.
*/
public class KnobDistribution extends Distribution {
public String getTag() {
return "Knob";
}
@Override
public KnobDistribution copy() {
return new KnobDistribution(generator.copy(), mu, sigma, iota);
}
private double mu;
private double sigma;
private double iota;
public double getMu() {
return mu;
}
public double getSigma() {
return sigma;
}
public double getIota() {
return iota;
}
@Override
public double getParameterA() {
return mu;
}
@Override
public double getParameterB() {
return sigma;
}
@Override
public double getParameterC() {
return iota;
}
/**
* Uses an {@link AceRandom}, mu = 0.0, sigma = 1.0, iota = 0.5 .
*/
public KnobDistribution() {
this(new AceRandom(), 0.0, 1.0, 0.5);
}
/**
* Uses an {@link AceRandom} and the given mu sigma, and iota.
*/
public KnobDistribution(double mu, double sigma, double iota) {
this(new AceRandom(), mu, sigma, iota);
}
/**
* Uses the given EnhancedRandom directly. Uses the given mu, sigma, and iota.
*/
public KnobDistribution(EnhancedRandom generator, double mu, double sigma, double iota)
{
this.generator = generator;
if(!setParameters(mu, sigma, iota))
throw new IllegalArgumentException("Given mu, sigma and/or iota are invalid.");
}
@Override
public double getMaximum() {
return Double.POSITIVE_INFINITY;
}
@Override
public double getMean() {
return mu;
}
@Override
public double getMedian() {
return mu;
}
@Override
public double getMinimum() {
return Double.NEGATIVE_INFINITY;
}
@Override
public double[] getMode() {
return new double[] { mu };
}
@Override
public double getVariance() {
throw new UnsupportedOperationException("Variance is undefined.");
}
/**
* Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false.
* @param a mu; must not be NaN
* @param b sigma; should be greater than 0.0
* @param c iota; must be between 0.0 and 1.0, both inclusive
* @return true if the parameters given are valid and will be used
*/
@Override
public boolean setParameters(double a, double b, double c) {
if(!Double.isNaN(a) && b > 0.0 && c >= 0.0 && c <= 1.0){
mu = a;
sigma = b;
iota = c;
return true;
}
return false;
}
@Override
public double nextDouble() {
return sample(generator, mu, sigma, iota);
}
public static double sample(EnhancedRandom generator, double mu, double sigma, double iota) {
return MathTools.lerp(generator.nextInclusiveDouble(-sigma, sigma) + mu,
generator.nextGaussian(mu, sigma), iota);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy