All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.tommyettinger.random.distribution.LogNormalDistribution Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2023 See AUTHORS file.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

package com.github.tommyettinger.random.distribution;

import com.github.tommyettinger.random.EnhancedRandom;
import com.github.tommyettinger.random.AceRandom;

/**
 * A two-parameter distribution with range from 0 (exclusive) to positive infinity.
 * 
* This was previously capitalized differently, as "LognormalDistribution" instead of "LogNormalDistribution". The * {@link #getTag()} was also different, and was "Lognormal" instead of "LogNormal". * @see Wikipedia's page on this distribution. */ public class LogNormalDistribution extends Distribution { public String getTag() { return "LogNormal"; } @Override public LogNormalDistribution copy() { return new LogNormalDistribution(generator.copy(), mu, sigma); } private double mu; private double sigma; public double getMu() { return mu; } public double getSigma() { return sigma; } @Override public double getParameterA() { return mu; } @Override public double getParameterB() { return sigma; } /** * Uses an {@link AceRandom}, mu = 0.0, sigma = 1.0 . */ public LogNormalDistribution() { this(new AceRandom(), 0.0, 1.0); } /** * Uses an {@link AceRandom} and the given mu and sigma. */ public LogNormalDistribution(double mu, double sigma) { this(new AceRandom(), mu, sigma); } /** * Uses the given EnhancedRandom directly. Uses the given mu and sigma. */ public LogNormalDistribution(EnhancedRandom generator, double mu, double sigma) { this.generator = generator; if(!setParameters(mu, sigma, 0.0)) throw new IllegalArgumentException("Given mu and/or sigma are invalid."); } @Override public double getMaximum() { return Double.POSITIVE_INFINITY; } @Override public double getMean() { return Math.exp(mu + 0.5 * sigma * sigma); } @Override public double getMedian() { return Math.exp(mu); } @Override public double getMinimum() { return 0.0; } @Override public double[] getMode() { return new double[] { Math.exp(mu - sigma * sigma) }; } @Override public double getVariance() { return (Math.exp(sigma * sigma) - 1.0) * Math.exp(2.0 * mu + sigma * sigma); } /** * Sets all parameters and returns true if they are valid, otherwise leaves parameters unchanged and returns false. * @param a mu; must not be NaN * @param b sigma; should be greater than 0.0 * @param c ignored * @return true if the parameters given are valid and will be used */ @Override public boolean setParameters(double a, double b, double c) { if(!Double.isNaN(a) && b > 0.0){ mu = a; sigma = b; return true; } return false; } @Override public double nextDouble() { return sample(generator, mu, sigma); } public static double sample(EnhancedRandom generator, double mu, double sigma) { return Math.exp(generator.nextGaussian(mu, sigma)); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy