Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
// Automatically generated - do not modify!
@file:JsModule("cesium")
@file:Suppress(
"EXTERNAL_CLASS_CONSTRUCTOR_PROPERTY_PARAMETER",
)
package cesium
/**
* A 2D Cartesian point.
* @see Online Documentation
*
* @constructor
* @property [x] The X component.
* Default value - `0.0`
* @property [y] The Y component.
* Default value - `0.0`
* @see Online Documentation
*/
external class Cartesian2(
var x: Double = definedExternally,
var y: Double = definedExternally,
) {
/**
* Duplicates this Cartesian2 instance.
* @param [result] The object onto which to store the result.
* @return The modified result parameter or a new Cartesian2 instance if one was not provided.
* @see Online Documentation
*/
fun clone(result: Cartesian2? = definedExternally): Cartesian2
/**
* Compares this Cartesian against the provided Cartesian componentwise and returns
* `true` if they pass an absolute or relative tolerance test,
* `false` otherwise.
* @param [right] The right hand side Cartesian.
* @param [relativeEpsilon] The relative epsilon tolerance to use for equality testing.
* Default value - `0`
* @param [absoluteEpsilon] The absolute epsilon tolerance to use for equality testing.
* Default value - [relativeEpsilon]
* @return `true` if they are within the provided epsilon, `false` otherwise.
* @see Online Documentation
*/
fun equalsEpsilon(
right: Cartesian2? = definedExternally,
relativeEpsilon: Double? = definedExternally,
absoluteEpsilon: Double? = definedExternally,
): Boolean
companion object : Packable {
/**
* Creates a Cartesian2 instance from x and y coordinates.
* @param [x] The x coordinate.
* @param [y] The y coordinate.
* @param [result] The object onto which to store the result.
* @return The modified result parameter or a new Cartesian2 instance if one was not provided.
* @see Online Documentation
*/
fun fromElements(
x: Double,
y: Double,
result: Cartesian2? = definedExternally,
): Cartesian2
/**
* Duplicates a Cartesian2 instance.
* @param [cartesian] The Cartesian to duplicate.
* @param [result] The object onto which to store the result.
* @return The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined)
* @see Online Documentation
*/
fun clone(
cartesian: Cartesian2,
result: Cartesian2? = definedExternally,
): Cartesian2
/**
* Creates a Cartesian2 instance from an existing Cartesian3. This simply takes the
* x and y properties of the Cartesian3 and drops z.
* @param [cartesian] The Cartesian3 instance to create a Cartesian2 instance from.
* @param [result] The object onto which to store the result.
* @return The modified result parameter or a new Cartesian2 instance if one was not provided.
* @see Online Documentation
*/
fun fromCartesian3(
cartesian: Cartesian3,
result: Cartesian2? = definedExternally,
): Cartesian2
/**
* Creates a Cartesian2 instance from an existing Cartesian4. This simply takes the
* x and y properties of the Cartesian4 and drops z and w.
* @param [cartesian] The Cartesian4 instance to create a Cartesian2 instance from.
* @param [result] The object onto which to store the result.
* @return The modified result parameter or a new Cartesian2 instance if one was not provided.
* @see Online Documentation
*/
fun fromCartesian4(
cartesian: Cartesian4,
result: Cartesian2? = definedExternally,
): Cartesian2
/**
* The number of elements used to pack the object into an array.
* @see Online Documentation
*/
override val packedLength: Int
/**
* Stores the provided instance into the provided array.
* @param [value] The value to pack.
* @param [array] The array to pack into.
* @param [startingIndex] The index into the array at which to start packing the elements.
* Default value - `0`
* @return The array that was packed into
* @see Online Documentation
*/
override fun pack(
value: Cartesian2,
array: Array,
startingIndex: Int?,
): Array
/**
* Retrieves an instance from a packed array.
* @param [array] The packed array.
* @param [startingIndex] The starting index of the element to be unpacked.
* Default value - `0`
* @param [result] The object into which to store the result.
* @return The modified result parameter or a new Cartesian2 instance if one was not provided.
* @see Online Documentation
*/
override fun unpack(
array: Array,
startingIndex: Int?,
result: Cartesian2?,
): Cartesian2
/**
* Flattens an array of Cartesian2s into and array of components.
* @param [array] The array of cartesians to pack.
* @param [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a [DeveloperError] will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements.
* @return The packed array.
* @see Online Documentation
*/
fun packArray(
array: Array,
result: Array? = definedExternally,
): Array
/**
* Unpacks an array of cartesian components into and array of Cartesian2s.
* @param [array] The array of components to unpack.
* @param [result] The array onto which to store the result.
* @return The unpacked array.
* @see Online Documentation
*/
fun unpackArray(
array: Array,
result: Array? = definedExternally,
): Array
/**
* Creates a Cartesian2 from two consecutive elements in an array.
* ```
* // Create a Cartesian2 with (1.0, 2.0)
* const v = [1.0, 2.0];
* const p = Cartesian2.fromArray(v);
*
* // Create a Cartesian2 with (1.0, 2.0) using an offset into an array
* const v2 = [0.0, 0.0, 1.0, 2.0];
* const p2 = Cartesian2.fromArray(v2, 2);
* ```
* @param [array] The array whose two consecutive elements correspond to the x and y components, respectively.
* @param [startingIndex] The offset into the array of the first element, which corresponds to the x component.
* Default value - `0`
* @param [result] The object onto which to store the result.
* @return The modified result parameter or a new Cartesian2 instance if one was not provided.
* @see Online Documentation
*/
fun fromArray(
array: Array,
startingIndex: Int? = definedExternally,
result: Cartesian2? = definedExternally,
): Cartesian2
/**
* Computes the value of the maximum component for the supplied Cartesian.
* @param [cartesian] The cartesian to use.
* @return The value of the maximum component.
* @see Online Documentation
*/
fun maximumComponent(cartesian: Cartesian2): Double
/**
* Computes the value of the minimum component for the supplied Cartesian.
* @param [cartesian] The cartesian to use.
* @return The value of the minimum component.
* @see Online Documentation
*/
fun minimumComponent(cartesian: Cartesian2): Double
/**
* Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
* @param [first] A cartesian to compare.
* @param [second] A cartesian to compare.
* @param [result] The object into which to store the result.
* @return A cartesian with the minimum components.
* @see Online Documentation
*/
fun minimumByComponent(
first: Cartesian2,
second: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
* @param [first] A cartesian to compare.
* @param [second] A cartesian to compare.
* @param [result] The object into which to store the result.
* @return A cartesian with the maximum components.
* @see Online Documentation
*/
fun maximumByComponent(
first: Cartesian2,
second: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Computes the provided Cartesian's squared magnitude.
* @param [cartesian] The Cartesian instance whose squared magnitude is to be computed.
* @return The squared magnitude.
* @see Online Documentation
*/
fun magnitudeSquared(cartesian: Cartesian2): Double
/**
* Computes the Cartesian's magnitude (length).
* @param [cartesian] The Cartesian instance whose magnitude is to be computed.
* @return The magnitude.
* @see Online Documentation
*/
fun magnitude(cartesian: Cartesian2): Double
/**
* Computes the distance between two points.
* ```
* // Returns 1.0
* const d = Cartesian2.distance(new Cartesian2(1.0, 0.0), new Cartesian2(2.0, 0.0));
* ```
* @param [left] The first point to compute the distance from.
* @param [right] The second point to compute the distance to.
* @return The distance between two points.
* @see Online Documentation
*/
fun distance(
left: Cartesian2,
right: Cartesian2,
): Double
/**
* Computes the squared distance between two points. Comparing squared distances
* using this function is more efficient than comparing distances using [Cartesian2.distance].
* ```
* // Returns 4.0, not 2.0
* const d = Cartesian2.distance(new Cartesian2(1.0, 0.0), new Cartesian2(3.0, 0.0));
* ```
* @param [left] The first point to compute the distance from.
* @param [right] The second point to compute the distance to.
* @return The distance between two points.
* @see Online Documentation
*/
fun distanceSquared(
left: Cartesian2,
right: Cartesian2,
): Double
/**
* Computes the normalized form of the supplied Cartesian.
* @param [cartesian] The Cartesian to be normalized.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun normalize(
cartesian: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Computes the dot (scalar) product of two Cartesians.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @return The dot product.
* @see Online Documentation
*/
fun dot(
left: Cartesian2,
right: Cartesian2,
): Double
/**
* Computes the magnitude of the cross product that would result from implicitly setting the Z coordinate of the input vectors to 0
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @return The cross product.
* @see Online Documentation
*/
fun cross(
left: Cartesian2,
right: Cartesian2,
): Double
/**
* Computes the componentwise product of two Cartesians.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun multiplyComponents(
left: Cartesian2,
right: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Computes the componentwise quotient of two Cartesians.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun divideComponents(
left: Cartesian2,
right: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Computes the componentwise sum of two Cartesians.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun add(
left: Cartesian2,
right: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Computes the componentwise difference of two Cartesians.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun subtract(
left: Cartesian2,
right: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Multiplies the provided Cartesian componentwise by the provided scalar.
* @param [cartesian] The Cartesian to be scaled.
* @param [scalar] The scalar to multiply with.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun multiplyByScalar(
cartesian: Cartesian2,
scalar: Double,
result: Cartesian2,
): Cartesian2
/**
* Divides the provided Cartesian componentwise by the provided scalar.
* @param [cartesian] The Cartesian to be divided.
* @param [scalar] The scalar to divide by.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun divideByScalar(
cartesian: Cartesian2,
scalar: Double,
result: Cartesian2,
): Cartesian2
/**
* Negates the provided Cartesian.
* @param [cartesian] The Cartesian to be negated.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun negate(
cartesian: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Computes the absolute value of the provided Cartesian.
* @param [cartesian] The Cartesian whose absolute value is to be computed.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun abs(
cartesian: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Computes the linear interpolation or extrapolation at t using the provided cartesians.
* @param [start] The value corresponding to t at 0.0.
* @param [end] The value corresponding to t at 1.0.
* @param [t] The point along t at which to interpolate.
* @param [result] The object onto which to store the result.
* @return The modified result parameter.
* @see Online Documentation
*/
fun lerp(
start: Cartesian2,
end: Cartesian2,
t: Double,
result: Cartesian2,
): Cartesian2
/**
* Returns the angle, in radians, between the provided Cartesians.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @return The angle between the Cartesians.
* @see Online Documentation
*/
fun angleBetween(
left: Cartesian2,
right: Cartesian2,
): Double
/**
* Returns the axis that is most orthogonal to the provided Cartesian.
* @param [cartesian] The Cartesian on which to find the most orthogonal axis.
* @param [result] The object onto which to store the result.
* @return The most orthogonal axis.
* @see Online Documentation
*/
fun mostOrthogonalAxis(
cartesian: Cartesian2,
result: Cartesian2,
): Cartesian2
/**
* Compares the provided Cartesians componentwise and returns
* `true` if they are equal, `false` otherwise.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @return `true` if left and right are equal, `false` otherwise.
* @see Online Documentation
*/
fun equals(
left: Cartesian2? = definedExternally,
right: Cartesian2? = definedExternally,
): Boolean
/**
* Compares the provided Cartesians componentwise and returns
* `true` if they pass an absolute or relative tolerance test,
* `false` otherwise.
* @param [left] The first Cartesian.
* @param [right] The second Cartesian.
* @param [relativeEpsilon] The relative epsilon tolerance to use for equality testing.
* Default value - `0`
* @param [absoluteEpsilon] The absolute epsilon tolerance to use for equality testing.
* Default value - [relativeEpsilon]
* @return `true` if left and right are within the provided epsilon, `false` otherwise.
* @see Online Documentation
*/
fun equalsEpsilon(
left: Cartesian2? = definedExternally,
right: Cartesian2? = definedExternally,
relativeEpsilon: Double? = definedExternally,
absoluteEpsilon: Double? = definedExternally,
): Boolean
/**
* An immutable Cartesian2 instance initialized to (0.0, 0.0).
* @see Online Documentation
*/
val ZERO: Cartesian2
/**
* An immutable Cartesian2 instance initialized to (1.0, 1.0).
* @see Online Documentation
*/
val ONE: Cartesian2
/**
* An immutable Cartesian2 instance initialized to (1.0, 0.0).
* @see Online Documentation
*/
val UNIT_X: Cartesian2
/**
* An immutable Cartesian2 instance initialized to (0.0, 1.0).
* @see Online Documentation
*/
val UNIT_Y: Cartesian2
}
}