com.datastax.data.prepare.spark.dataset.FlatMapOperator Maven / Gradle / Ivy
The newest version!
package com.datastax.data.prepare.spark.dataset;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.datastax.insight.core.driver.SparkContextBuilder;
import com.datastax.insight.spec.Operator;
import com.datastax.insight.annonation.InsightComponent;
import com.datastax.insight.annonation.InsightComponentArg;
import com.datastax.data.prepare.spark.dataset.params.FlatMapParam;
import com.datastax.data.prepare.util.Consts;
import com.datastax.data.prepare.util.CustomException;
import com.datastax.data.prepare.util.SharedMethods;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class FlatMapOperator implements Operator {
private static Logger logger = LoggerFactory.getLogger(FlatMapOperator.class);
@InsightComponent(name = "列拆分", description = "将一列按照一定规则拆分成多列")
public static Dataset flatMap(
@InsightComponentArg(externalInput = true, name = "数据集", description = "数据集") Dataset data,
@InsightComponentArg(name = "参数", description = "参数") JSONArray array) {
if(array.isEmpty()) {
logger.info("列拆分组件参数为空, 返回原数据集");
return data;
}
if(data == null) {
logger.info("列拆分组件中的数据集为空, 返回空");
return null;
}
List flatMapParams = new ArrayList<>();
for(int i = 0; i < array.size(); i++) {
JSONObject jsonObject = array.getJSONObject(i);
FlatMapParam flatMapParam = new FlatMapParam();
String column = jsonObject.getString("selector");
String pattern = jsonObject.getString("selectorValue");
int sliceNum = jsonObject.getInteger("method");
String columnName = jsonObject.getString("methodValue");
if(sliceNum <= 0) {
// logger.info("分列数小于等于0,若选中列中的某一个值切分后生成值的数量与其他不等,便会报错!");
throw new CustomException("分列数小于等于0,若选中列中的某一个值切分后生成值的数量与其他不等,便会报错。因此需要设定该值");
}
if(column == null || pattern == null) {
continue;
}
if(columnName == null || columnName.split(Consts.DELIMITER).length != sliceNum) {
logger.info("切分后的列名为空或者切分后的列数和填写的分列数不符,默认为列名加_slice加数值迭加(1,2,3...)");
StringBuffer stringBuffer = new StringBuffer();
for(int j = 0; j < sliceNum; j++) {
stringBuffer.append(column).append("_sp").append(j + 1);
if(j + 1 != sliceNum) {
stringBuffer.append(Consts.DELIMITER);
}
}
columnName = stringBuffer.toString();
}
flatMapParam.setColumn(column);
flatMapParam.setPattern(pattern);
flatMapParam.setSliceNum(sliceNum);
flatMapParam.setSliceColumnName(columnName);
flatMapParams.add(flatMapParam);
}
return flatMap1(data, flatMapParams);
}
protected static Dataset flatMap1(Dataset data, List flatMapParams) {
SparkSession spark = SparkContextBuilder.getSession();
Map schemaRecord = new HashMap<>();
StructField[] fields = data.schema().fields();
SharedMethods.recordSchema(fields, schemaRecord);
Map infos = new HashMap<>();
for(FlatMapParam flatMapParam : flatMapParams) {
int position = Integer.valueOf(schemaRecord.get(flatMapParam.getColumn())[0].toString());
if(infos.containsKey(position)) {
logger.info("分割的列" + flatMapParam.getColumn() + "重复,跳过");
} else {
infos.put(position, flatMapParam);
}
}
JavaRDD javaRDD = data.toDF().javaRDD().map(new Function() {
@Override
public Row call(Row r) throws Exception {
List
© 2015 - 2025 Weber Informatics LLC | Privacy Policy