com.datastax.insight.ml.spark.mllib.regression.DecisionTreeRegression Maven / Gradle / Ivy
The newest version!
package com.datastax.insight.ml.spark.mllib.regression;
import com.datastax.insight.spec.RDDOperator;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.tree.DecisionTree;
import org.apache.spark.mllib.tree.model.DecisionTreeModel;
import scala.Tuple2;
import java.util.HashMap;
import java.util.Map;
public class DecisionTreeRegression implements RDDOperator {
public static DecisionTreeModel train(JavaRDD data,
int maxDepth, int maxBins){
return train(data,"variance",maxDepth,maxBins);
}
public static DecisionTreeModel train(JavaRDD data,
String impurity, int maxDepth, int maxBins){
Map categoricalFeaturesInfo = new HashMap<>();
DecisionTreeModel model = DecisionTree.trainRegressor(data,
categoricalFeaturesInfo, impurity, maxDepth, maxBins);
return model;
}
public static JavaPairRDD predict(JavaRDD data, DecisionTreeModel model){
JavaPairRDD predictionAndLabel =
data.mapToPair(new PairFunction() {
@Override
public Tuple2 call(LabeledPoint p) {
return new Tuple2<>(model.predict(p.features()), p.label());
}
});
return predictionAndLabel;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy