All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.graphbuilder.curve.LagrangeCurve Maven / Gradle / Ivy

Go to download

Implementation of various mathematical curves that define themselves over a set of control points. The API is written in Java. The curves supported are: Bezier, B-Spline, Cardinal Spline, Catmull-Rom Spline, Lagrange, Natural Cubic Spline, and NURBS.

There is a newer version: 1.08
Show newest version
/*
* Copyright (c) 2005, Graph Builder
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of Graph Builder nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

package com.graphbuilder.curve;

/**

The Lagrange curve passes through the control-points specified by the group-iterator. It uses a knot-vector to control when the curve passes through each control-point. That is, if there is a knot-value for every control-point, then the curve will pass through point i when the value of t is knot[i], which is an interesting property. Figure 1 is an example of this.

In addition, when there is a knot-value for every point then the base-index should be 0, and the base-length should be n-1, where n is the size of the group-iterator.

A knot-vector with size less than n can still be used. In this case the Lagrange curve is generated in multiple sections. This approach works better when the points are roughly equally spaced. Figure 2 is an example of this.

Lagrange curves and also be closed as shown in figures 3 & 4.

Notes on the knot-vector, base-index and base-length. The size of the knot-vector specifies how many points are used for each section of the curve. The base-index specifies which point a section starts at. The base-index + base-length specify which point the section ends at. Once a section has been generated, the next section is generated starting from the end of the last section. */ public class LagrangeCurve extends ParametricCurve { private ValueVector knotVector = new ValueVector(new double[] { 0.0, 1.0 / 3.0, 2.0 / 3.0, 1.0 }, 4); private int baseIndex = 1; private int baseLength = 1; private boolean interpolateFirst = false; private boolean interpolateLast = false; private static final ThreadLocal SHARED_DATA = new ThreadLocal(){ protected SharedData initialValue() { return new SharedData(); } }; private final SharedData sharedData = SHARED_DATA.get(); private static class SharedData { private double[][] pt = new double[0][]; } /** Creates a LagrangeCurve with knot vector [0, 1/3, 2/3, 1], baseIndex == 1, baseLength == 1, interpolateFirst and interpolateLast are both false. The knot vector, baseIndex and baseLength along with the control points define the shape of curve. See the appendTo method for more information. @see #appendTo(MultiPath) */ public LagrangeCurve(ControlPath cp, GroupIterator gi) { super(cp, gi); } /** Returns the base-index. The default value is 1. @see #setBaseIndex(int) */ public int getBaseIndex() { return baseIndex; } /** The base-index is an index location into the knot vector such that, for each section, the curve is evaluated between [knot[baseIndex], knot[baseIndex + baseLength]]. @throws IllegalArgumentException If base-index < 0. @see #getBaseIndex() */ public void setBaseIndex(int b) { if (b < 0) throw new IllegalArgumentException("base index >= 0 required."); baseIndex = b; } /** Returns the base-length. The default value is 1. @see #setBaseLength(int) */ public int getBaseLength() { return baseLength; } /** The base-length along with the base-index specify the interval to evaluate each section. @throws IllegalArgumentException If base-length <= 0. @see #getBaseLength() */ public void setBaseLength(int b) { if (b <= 0) throw new IllegalArgumentException("base length > 0 required."); baseLength = b; } /** If baseIndex > 0 then the first control-points will only be interpolated if interpolate-first is set to true. @see #setInterpolateFirst(boolean) */ public boolean getInterpolateFirst() { return interpolateFirst; } /** If baseIndex + baseLength < numKnots - 1 then the last control-points will only be interpolated if interpolate-last is set to true. @see #setInterpolateLast(boolean) */ public boolean getInterpolateLast() { return interpolateLast; } /** Sets the value of the interpolateFirst flag. @see #getInterpolateFirst() */ public void setInterpolateFirst(boolean b) { interpolateFirst = b; } /** Sets the value of the interpolateLast flag. @see #getInterpolateLast() */ public void setInterpolateLast(boolean b) { interpolateLast = b; } /** Returns the knot-vector for this curve. @see #setKnotVector(ValueVector) */ public ValueVector getKnotVector() { return knotVector; } /** Sets the knot-vector for this curve. @see #getKnotVector() @throws IllegalArgumentException If the value-vector is null. */ public void setKnotVector(ValueVector v) { if (v == null) throw new IllegalArgumentException("Knot-vector cannot be null."); knotVector = v; } /** Returns a value of 1. */ public int getSampleLimit() { return 1; } protected void eval(double[] p) { double t = p[p.length - 1]; int n = knotVector.size(); for (int i = 0; i < n; i++) { double[] q = sharedData.pt[i]; double L = L(t, i); for (int j = 0; j < p.length - 1; j++) p[j] += q[j] * L; } } private double L(double t, int i) { double d = 1.0; int n = knotVector.size(); for (int j = 0; j < n; j++) { double e = knotVector.get(i) - knotVector.get(j); if (e != 0) d = d * ((t - knotVector.get(j)) / e); } return d; } /** For the control-points to be interpolated in order, the knot-vector values should be strictly increasing, however that is not required. The requirements are the group-iterator must be in range and baseIndex + baseLength < numKnots. As well, the number of points defined by the group-iterator must be >= numKnots, otherwise the curve does not have enough control-points to define itself. If any of these requirements are not met, then this method returns quietly. */ public void appendTo(MultiPath mp) { if (!gi.isInRange(0, cp.numPoints())) throw new IllegalArgumentException("Group iterator not in range"); if (baseIndex + baseLength >= knotVector.size()) throw new IllegalArgumentException("baseIndex + baseLength >= knotVector.size"); if (sharedData.pt.length < knotVector.size()) sharedData.pt = new double[2 * knotVector.size()][]; gi.set(0, 0); boolean b = false; if (baseIndex != 0 && interpolateFirst) { for (int i = 0; i < knotVector.size(); i++) { if (!gi.hasNext()) throw new IllegalArgumentException("Group iterator ended early"); sharedData.pt[i] = cp.getPoint(gi.next()).getLocation(); } b = doBCAA(mp, knotVector.get(0), knotVector.get(baseIndex), b); } gi.set(0, 0); int last_i = 0; int last_j = 0; while (true) { int temp_i = gi.index_i(); int temp_j = gi.count_j(); int index_i = 0; int count_j = 0; int i = 0; int j = 0; for (; j < knotVector.size(); j++) { if (i == baseLength) { index_i = gi.index_i(); count_j = gi.count_j(); } if (!gi.hasNext()) break; sharedData.pt[j] = cp.getPoint(gi.next()).getLocation(); i++; } if (j < knotVector.size()) { break; } else { gi.set(index_i, count_j); last_i = temp_i; last_j = temp_j; } b = doBCAA(mp, knotVector.get(baseIndex), knotVector.get(baseIndex + baseLength), b); } if (baseIndex + baseLength < knotVector.size() - 1 && interpolateLast) { gi.set(last_i, last_j); for (int i = 0; i < knotVector.size(); i++) { if (!gi.hasNext()) { System.out.println("not enough points to interpolate last"); return; } sharedData.pt[i] = cp.getPoint(gi.next()).getLocation(); } doBCAA(mp, knotVector.get(baseIndex + baseLength), knotVector.get(knotVector.size() - 1), b); } } private boolean doBCAA(MultiPath mp, double t1, double t2, boolean b) { if (t2 < t1) { double temp = t1; t1 = t2; t2 = temp; } if (!b) { b = true; double[] d = new double[mp.getDimension() + 1]; d[mp.getDimension()] = t1; eval(d); if (connect) mp.lineTo(d); else mp.moveTo(d); } BinaryCurveApproximationAlgorithm.genPts(this, t1, t2, mp); return b; } public void resetMemory() { if (sharedData.pt.length > 0) sharedData.pt = new double[0][]; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy