com.graphbuilder.org.apache.harmony.awt.gl.Crossing Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of curvesapi Show documentation
Show all versions of curvesapi Show documentation
Implementation of various mathematical curves that define themselves over a set of control points. The API is written in Java. The curves supported are: Bezier, B-Spline, Cardinal Spline, Catmull-Rom Spline, Lagrange, Natural Cubic Spline, and NURBS.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @author Denis M. Kishenko
*/
package com.graphbuilder.org.apache.harmony.awt.gl;
import java.awt.Shape;
import java.awt.geom.PathIterator;
public class Crossing {
/**
* Allowable tolerance for bounds comparison
*/
static final double DELTA = 1E-5;
/**
* If roots have distance less then ROOT_DELTA
they are double
*/
static final double ROOT_DELTA = 1E-10;
/**
* Rectangle cross segment
*/
public static final int CROSSING = 255;
/**
* Unknown crossing result
*/
static final int UNKNOWN = 254;
/**
* Solves quadratic equation
* @param eqn - the coefficients of the equation
* @param res - the roots of the equation
* @return a number of roots
*/
public static int solveQuad(double eqn[], double res[]) {
double a = eqn[2];
double b = eqn[1];
double c = eqn[0];
int rc = 0;
if (a == 0.0) {
if (b == 0.0) {
return -1;
}
res[rc++] = -c / b;
} else {
double d = b * b - 4.0 * a * c;
// d < 0.0
if (d < 0.0) {
return 0;
}
d = Math.sqrt(d);
res[rc++] = (- b + d) / (a * 2.0);
// d != 0.0
if (d != 0.0) {
res[rc++] = (- b - d) / (a * 2.0);
}
}
return fixRoots(res, rc);
}
/**
* Solves cubic equation
* @param eqn - the coefficients of the equation
* @param res - the roots of the equation
* @return a number of roots
*/
public static int solveCubic(double eqn[], double res[]) {
double d = eqn[3];
if (d == 0) {
return solveQuad(eqn, res);
}
double a = eqn[2] / d;
double b = eqn[1] / d;
double c = eqn[0] / d;
int rc = 0;
double Q = (a * a - 3.0 * b) / 9.0;
double R = (2.0 * a * a * a - 9.0 * a * b + 27.0 * c) / 54.0;
double Q3 = Q * Q * Q;
double R2 = R * R;
double n = - a / 3.0;
if (R2 < Q3) {
double t = Math.acos(R / Math.sqrt(Q3)) / 3.0;
double p = 2.0 * Math.PI / 3.0;
double m = -2.0 * Math.sqrt(Q);
res[rc++] = m * Math.cos(t) + n;
res[rc++] = m * Math.cos(t + p) + n;
res[rc++] = m * Math.cos(t - p) + n;
} else {
// Debug.println("R2 >= Q3 (" + R2 + "/" + Q3 + ")");
double A = Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0);
if (R > 0.0) {
A = -A;
}
// if (A == 0.0) {
if (-ROOT_DELTA < A && A < ROOT_DELTA) {
res[rc++] = n;
} else {
double B = Q / A;
res[rc++] = A + B + n;
// if (R2 == Q3) {
double delta = R2 - Q3;
if (-ROOT_DELTA < delta && delta < ROOT_DELTA) {
res[rc++] = - (A + B) / 2.0 + n;
}
}
}
return fixRoots(res, rc);
}
/**
* Excludes double roots. Roots are double if they lies enough close with each other.
* @param res - the roots
* @param rc - the roots count
* @return new roots count
*/
static int fixRoots(double res[], int rc) {
int tc = 0;
for(int i = 0; i < rc; i++) {
out: {
for(int j = i + 1; j < rc; j++) {
if (isZero(res[i] - res[j])) {
break out;
}
}
res[tc++] = res[i];
}
}
return tc;
}
/**
* QuadCurve class provides basic functionality to find curve crossing and calculating bounds
*/
public static class QuadCurve {
double ax, ay, bx, by;
double Ax, Ay, Bx, By;
public QuadCurve(double x1, double y1, double cx, double cy, double x2, double y2) {
ax = x2 - x1;
ay = y2 - y1;
bx = cx - x1;
by = cy - y1;
Bx = bx + bx; // Bx = 2.0 * bx
Ax = ax - Bx; // Ax = ax - 2.0 * bx
By = by + by; // By = 2.0 * by
Ay = ay - By; // Ay = ay - 2.0 * by
}
int cross(double res[], int rc, double py1, double py2) {
int cross = 0;
for (int i = 0; i < rc; i++) {
double t = res[i];
// CURVE-OUTSIDE
if (t < -DELTA || t > 1 + DELTA) {
continue;
}
// CURVE-START
if (t < DELTA) {
if (py1 < 0.0 && (bx != 0.0 ? bx : ax - bx) < 0.0) {
cross--;
}
continue;
}
// CURVE-END
if (t > 1 - DELTA) {
if (py1 < ay && (ax != bx ? ax - bx : bx) > 0.0) {
cross++;
}
continue;
}
// CURVE-INSIDE
double ry = t * (t * Ay + By);
// ry = t * t * Ay + t * By
if (ry > py2) {
double rxt = t * Ax + bx;
// rxt = 2.0 * t * Ax + Bx = 2.0 * t * Ax + 2.0 * bx
if (rxt > -DELTA && rxt < DELTA) {
continue;
}
cross += rxt > 0.0 ? 1 : -1;
}
} // for
return cross;
}
int solvePoint(double res[], double px) {
double eqn[] = {-px, Bx, Ax};
return solveQuad(eqn, res);
}
int solveExtrem(double res[]) {
int rc = 0;
if (Ax != 0.0) {
res[rc++] = - Bx / (Ax + Ax);
}
if (Ay != 0.0) {
res[rc++] = - By / (Ay + Ay);
}
return rc;
}
int addBound(double bound[], int bc, double res[], int rc, double minX, double maxX, boolean changeId, int id) {
for(int i = 0; i < rc; i++) {
double t = res[i];
if (t > -DELTA && t < 1 + DELTA) {
double rx = t * (t * Ax + Bx);
if (minX <= rx && rx <= maxX) {
bound[bc++] = t;
bound[bc++] = rx;
bound[bc++] = t * (t * Ay + By);
bound[bc++] = id;
if (changeId) {
id++;
}
}
}
}
return bc;
}
}
/**
* CubicCurve class provides basic functionality to find curve crossing and calculating bounds
*/
public static class CubicCurve {
double ax, ay, bx, by, cx, cy;
double Ax, Ay, Bx, By, Cx, Cy;
double Ax3, Bx2;
public CubicCurve(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2) {
ax = x2 - x1;
ay = y2 - y1;
bx = cx1 - x1;
by = cy1 - y1;
cx = cx2 - x1;
cy = cy2 - y1;
Cx = bx + bx + bx; // Cx = 3.0 * bx
Bx = cx + cx + cx - Cx - Cx; // Bx = 3.0 * cx - 6.0 * bx
Ax = ax - Bx - Cx; // Ax = ax - 3.0 * cx + 3.0 * bx
Cy = by + by + by; // Cy = 3.0 * by
By = cy + cy + cy - Cy - Cy; // By = 3.0 * cy - 6.0 * by
Ay = ay - By - Cy; // Ay = ay - 3.0 * cy + 3.0 * by
Ax3 = Ax + Ax + Ax;
Bx2 = Bx + Bx;
}
int cross(double res[], int rc, double py1, double py2) {
int cross = 0;
for (int i = 0; i < rc; i++) {
double t = res[i];
// CURVE-OUTSIDE
if (t < -DELTA || t > 1 + DELTA) {
continue;
}
// CURVE-START
if (t < DELTA) {
if (py1 < 0.0 && (bx != 0.0 ? bx : (cx != bx ? cx - bx : ax - cx)) < 0.0) {
cross--;
}
continue;
}
// CURVE-END
if (t > 1 - DELTA) {
if (py1 < ay && (ax != cx ? ax - cx : (cx != bx ? cx - bx : bx)) > 0.0) {
cross++;
}
continue;
}
// CURVE-INSIDE
double ry = t * (t * (t * Ay + By) + Cy);
// ry = t * t * t * Ay + t * t * By + t * Cy
if (ry > py2) {
double rxt = t * (t * Ax3 + Bx2) + Cx;
// rxt = 3.0 * t * t * Ax + 2.0 * t * Bx + Cx
if (rxt > -DELTA && rxt < DELTA) {
rxt = t * (Ax3 + Ax3) + Bx2;
// rxt = 6.0 * t * Ax + 2.0 * Bx
if (rxt < -DELTA || rxt > DELTA) {
// Inflection point
continue;
}
rxt = ax;
}
cross += rxt > 0.0 ? 1 : -1;
}
} //for
return cross;
}
int solvePoint(double res[], double px) {
double eqn[] = {-px, Cx, Bx, Ax};
return solveCubic(eqn, res);
}
int solveExtremX(double res[]) {
double eqn[] = {Cx, Bx2, Ax3};
return solveQuad(eqn, res);
}
int solveExtremY(double res[]) {
double eqn[] = {Cy, By + By, Ay + Ay + Ay};
return solveQuad(eqn, res);
}
int addBound(double bound[], int bc, double res[], int rc, double minX, double maxX, boolean changeId, int id) {
for(int i = 0; i < rc; i++) {
double t = res[i];
if (t > -DELTA && t < 1 + DELTA) {
double rx = t * (t * (t * Ax + Bx) + Cx);
if (minX <= rx && rx <= maxX) {
bound[bc++] = t;
bound[bc++] = rx;
bound[bc++] = t * (t * (t * Ay + By) + Cy);
bound[bc++] = id;
if (changeId) {
id++;
}
}
}
}
return bc;
}
}
/**
* Returns how many times ray from point (x,y) cross line.
*/
public static int crossLine(double x1, double y1, double x2, double y2, double x, double y) {
// LEFT/RIGHT/UP/EMPTY
if ((x < x1 && x < x2) ||
(x > x1 && x > x2) ||
(y > y1 && y > y2) ||
(x1 == x2))
{
return 0;
}
// DOWN
if (y < y1 && y < y2) {
} else {
// INSIDE
if ((y2 - y1) * (x - x1) / (x2 - x1) <= y - y1) {
// INSIDE-UP
return 0;
}
}
// START
if (x == x1) {
return x1 < x2 ? 0 : -1;
}
// END
if (x == x2) {
return x1 < x2 ? 1 : 0;
}
// INSIDE-DOWN
return x1 < x2 ? 1 : -1;
}
/**
* Returns how many times ray from point (x,y) cross quard curve
*/
public static int crossQuad(double x1, double y1, double cx, double cy, double x2, double y2, double x, double y) {
// LEFT/RIGHT/UP/EMPTY
if ((x < x1 && x < cx && x < x2) ||
(x > x1 && x > cx && x > x2) ||
(y > y1 && y > cy && y > y2) ||
(x1 == cx && cx == x2))
{
return 0;
}
// DOWN
if (y < y1 && y < cy && y < y2 && x != x1 && x != x2) {
if (x1 < x2) {
return x1 < x && x < x2 ? 1 : 0;
}
return x2 < x && x < x1 ? -1 : 0;
}
// INSIDE
QuadCurve c = new QuadCurve(x1, y1, cx, cy, x2, y2);
double px = x - x1;
double py = y - y1;
double res[] = new double[3];
int rc = c.solvePoint(res, px);
return c.cross(res, rc, py, py);
}
/**
* Returns how many times ray from point (x,y) cross cubic curve
*/
public static int crossCubic(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2, double x, double y) {
// LEFT/RIGHT/UP/EMPTY
if ((x < x1 && x < cx1 && x < cx2 && x < x2) ||
(x > x1 && x > cx1 && x > cx2 && x > x2) ||
(y > y1 && y > cy1 && y > cy2 && y > y2) ||
(x1 == cx1 && cx1 == cx2 && cx2 == x2))
{
return 0;
}
// DOWN
if (y < y1 && y < cy1 && y < cy2 && y < y2 && x != x1 && x != x2) {
if (x1 < x2) {
return x1 < x && x < x2 ? 1 : 0;
}
return x2 < x && x < x1 ? -1 : 0;
}
// INSIDE
CubicCurve c = new CubicCurve(x1, y1, cx1, cy1, cx2, cy2, x2, y2);
double px = x - x1;
double py = y - y1;
double res[] = new double[3];
int rc = c.solvePoint(res, px);
return c.cross(res, rc, py, py);
}
/**
* Returns how many times ray from point (x,y) cross path
*/
public static int crossPath(PathIterator p, double x, double y) {
int cross = 0;
double mx, my, cx, cy;
mx = my = cx = cy = 0.0;
double coords[] = new double[6];
while (!p.isDone()) {
switch (p.currentSegment(coords)) {
case PathIterator.SEG_MOVETO:
if (cx != mx || cy != my) {
cross += crossLine(cx, cy, mx, my, x, y);
}
mx = cx = coords[0];
my = cy = coords[1];
break;
case PathIterator.SEG_LINETO:
cross += crossLine(cx, cy, cx = coords[0], cy = coords[1], x, y);
break;
case PathIterator.SEG_QUADTO:
cross += crossQuad(cx, cy, coords[0], coords[1], cx = coords[2], cy = coords[3], x, y);
break;
case PathIterator.SEG_CUBICTO:
cross += crossCubic(cx, cy, coords[0], coords[1], coords[2], coords[3], cx = coords[4], cy = coords[5], x, y);
break;
case PathIterator.SEG_CLOSE:
if (cy != my || cx != mx) {
cross += crossLine(cx, cy, cx = mx, cy = my, x, y);
}
break;
}
// checks if the point (x,y) is the vertex of shape with PathIterator p
if (x == cx && y == cy) {
cross = 0;
cy = my;
break;
}
p.next();
}
if (cy != my) {
cross += crossLine(cx, cy, mx, my, x, y);
}
return cross;
}
/**
* Returns how many times ray from point (x,y) cross shape
*/
public static int crossShape(Shape s, double x, double y) {
if (!s.getBounds2D().contains(x, y)) {
return 0;
}
return crossPath(s.getPathIterator(null), x, y);
}
/**
* Returns true if value enough small
*/
public static boolean isZero(double val) {
return -DELTA < val && val < DELTA;
}
/**
* Sort bound array
*/
static void sortBound(double bound[], int bc) {
for(int i = 0; i < bc - 4; i += 4) {
int k = i;
for(int j = i + 4; j < bc; j += 4) {
if (bound[k] > bound[j]) {
k = j;
}
}
if (k != i) {
double tmp = bound[i];
bound[i] = bound[k];
bound[k] = tmp;
tmp = bound[i + 1];
bound[i + 1] = bound[k + 1];
bound[k + 1] = tmp;
tmp = bound[i + 2];
bound[i + 2] = bound[k + 2];
bound[k + 2] = tmp;
tmp = bound[i + 3];
bound[i + 3] = bound[k + 3];
bound[k + 3] = tmp;
}
}
}
/**
* Returns are bounds intersect or not intersect rectangle
*/
static int crossBound(double bound[], int bc, double py1, double py2) {
// LEFT/RIGHT
if (bc == 0) {
return 0;
}
// Check Y coordinate
int up = 0;
int down = 0;
for(int i = 2; i < bc; i += 4) {
if (bound[i] < py1) {
up++;
continue;
}
if (bound[i] > py2) {
down++;
continue;
}
return CROSSING;
}
// UP
if (down == 0) {
return 0;
}
if (up != 0) {
// bc >= 2
sortBound(bound, bc);
boolean sign = bound[2] > py2;
for(int i = 6; i < bc; i += 4) {
boolean sign2 = bound[i] > py2;
if (sign != sign2 && bound[i + 1] != bound[i - 3]) {
return CROSSING;
}
sign = sign2;
}
}
return UNKNOWN;
}
/**
* Returns how many times rectangle stripe cross line or the are intersect
*/
public static int intersectLine(double x1, double y1, double x2, double y2, double rx1, double ry1, double rx2, double ry2) {
// LEFT/RIGHT/UP
if ((rx2 < x1 && rx2 < x2) ||
(rx1 > x1 && rx1 > x2) ||
(ry1 > y1 && ry1 > y2))
{
return 0;
}
// DOWN
if (ry2 < y1 && ry2 < y2) {
} else {
// INSIDE
if (x1 == x2) {
return CROSSING;
}
// Build bound
double bx1, bx2;
if (x1 < x2) {
bx1 = x1 < rx1 ? rx1 : x1;
bx2 = x2 < rx2 ? x2 : rx2;
} else {
bx1 = x2 < rx1 ? rx1 : x2;
bx2 = x1 < rx2 ? x1 : rx2;
}
double k = (y2 - y1) / (x2 - x1);
double by1 = k * (bx1 - x1) + y1;
double by2 = k * (bx2 - x1) + y1;
// BOUND-UP
if (by1 < ry1 && by2 < ry1) {
return 0;
}
// BOUND-DOWN
if (by1 > ry2 && by2 > ry2) {
} else {
return CROSSING;
}
}
// EMPTY
if (x1 == x2) {
return 0;
}
// CURVE-START
if (rx1 == x1) {
return x1 < x2 ? 0 : -1;
}
// CURVE-END
if (rx1 == x2) {
return x1 < x2 ? 1 : 0;
}
if (x1 < x2) {
return x1 < rx1 && rx1 < x2 ? 1 : 0;
}
return x2 < rx1 && rx1 < x1 ? -1 : 0;
}
/**
* Returns how many times rectangle stripe cross quad curve or the are intersect
*/
public static int intersectQuad(double x1, double y1, double cx, double cy, double x2, double y2, double rx1, double ry1, double rx2, double ry2) {
// LEFT/RIGHT/UP ------------------------------------------------------
if ((rx2 < x1 && rx2 < cx && rx2 < x2) ||
(rx1 > x1 && rx1 > cx && rx1 > x2) ||
(ry1 > y1 && ry1 > cy && ry1 > y2))
{
return 0;
}
// DOWN ---------------------------------------------------------------
if (ry2 < y1 && ry2 < cy && ry2 < y2 && rx1 != x1 && rx1 != x2) {
if (x1 < x2) {
return x1 < rx1 && rx1 < x2 ? 1 : 0;
}
return x2 < rx1 && rx1 < x1 ? -1 : 0;
}
// INSIDE -------------------------------------------------------------
QuadCurve c = new QuadCurve(x1, y1, cx, cy, x2, y2);
double px1 = rx1 - x1;
double py1 = ry1 - y1;
double px2 = rx2 - x1;
double py2 = ry2 - y1;
double res1[] = new double[3];
double res2[] = new double[3];
int rc1 = c.solvePoint(res1, px1);
int rc2 = c.solvePoint(res2, px2);
// INSIDE-LEFT/RIGHT
if (rc1 == 0 && rc2 == 0) {
return 0;
}
// Build bound --------------------------------------------------------
double minX = px1 - DELTA;
double maxX = px2 + DELTA;
double bound[] = new double[28];
int bc = 0;
// Add roots
bc = c.addBound(bound, bc, res1, rc1, minX, maxX, false, 0);
bc = c.addBound(bound, bc, res2, rc2, minX, maxX, false, 1);
// Add extremal points`
rc2 = c.solveExtrem(res2);
bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 2);
// Add start and end
if (rx1 < x1 && x1 < rx2) {
bound[bc++] = 0.0;
bound[bc++] = 0.0;
bound[bc++] = 0.0;
bound[bc++] = 4;
}
if (rx1 < x2 && x2 < rx2) {
bound[bc++] = 1.0;
bound[bc++] = c.ax;
bound[bc++] = c.ay;
bound[bc++] = 5;
}
// End build bound ----------------------------------------------------
int cross = crossBound(bound, bc, py1, py2);
if (cross != UNKNOWN) {
return cross;
}
return c.cross(res1, rc1, py1, py2);
}
/**
* Returns how many times rectangle stripe cross cubic curve or the are intersect
*/
public static int intersectCubic(double x1, double y1, double cx1, double cy1, double cx2, double cy2, double x2, double y2, double rx1, double ry1, double rx2, double ry2) {
// LEFT/RIGHT/UP
if ((rx2 < x1 && rx2 < cx1 && rx2 < cx2 && rx2 < x2) ||
(rx1 > x1 && rx1 > cx1 && rx1 > cx2 && rx1 > x2) ||
(ry1 > y1 && ry1 > cy1 && ry1 > cy2 && ry1 > y2))
{
return 0;
}
// DOWN
if (ry2 < y1 && ry2 < cy1 && ry2 < cy2 && ry2 < y2 && rx1 != x1 && rx1 != x2) {
if (x1 < x2) {
return x1 < rx1 && rx1 < x2 ? 1 : 0;
}
return x2 < rx1 && rx1 < x1 ? -1 : 0;
}
// INSIDE
CubicCurve c = new CubicCurve(x1, y1, cx1, cy1, cx2, cy2, x2, y2);
double px1 = rx1 - x1;
double py1 = ry1 - y1;
double px2 = rx2 - x1;
double py2 = ry2 - y1;
double res1[] = new double[3];
double res2[] = new double[3];
int rc1 = c.solvePoint(res1, px1);
int rc2 = c.solvePoint(res2, px2);
// LEFT/RIGHT
if (rc1 == 0 && rc2 == 0) {
return 0;
}
double minX = px1 - DELTA;
double maxX = px2 + DELTA;
// Build bound --------------------------------------------------------
double bound[] = new double[40];
int bc = 0;
// Add roots
bc = c.addBound(bound, bc, res1, rc1, minX, maxX, false, 0);
bc = c.addBound(bound, bc, res2, rc2, minX, maxX, false, 1);
// Add extrimal points
rc2 = c.solveExtremX(res2);
bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 2);
rc2 = c.solveExtremY(res2);
bc = c.addBound(bound, bc, res2, rc2, minX, maxX, true, 4);
// Add start and end
if (rx1 < x1 && x1 < rx2) {
bound[bc++] = 0.0;
bound[bc++] = 0.0;
bound[bc++] = 0.0;
bound[bc++] = 6;
}
if (rx1 < x2 && x2 < rx2) {
bound[bc++] = 1.0;
bound[bc++] = c.ax;
bound[bc++] = c.ay;
bound[bc++] = 7;
}
// End build bound ----------------------------------------------------
int cross = crossBound(bound, bc, py1, py2);
if (cross != UNKNOWN) {
return cross;
}
return c.cross(res1, rc1, py1, py2);
}
/**
* Returns how many times rectangle stripe cross path or the are intersect
*/
public static int intersectPath(PathIterator p, double x, double y, double w, double h) {
int cross = 0;
int count;
double mx, my, cx, cy;
mx = my = cx = cy = 0.0;
double coords[] = new double[6];
double rx1 = x;
double ry1 = y;
double rx2 = x + w;
double ry2 = y + h;
while (!p.isDone()) {
count = 0;
switch (p.currentSegment(coords)) {
case PathIterator.SEG_MOVETO:
if (cx != mx || cy != my) {
count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2);
}
mx = cx = coords[0];
my = cy = coords[1];
break;
case PathIterator.SEG_LINETO:
count = intersectLine(cx, cy, cx = coords[0], cy = coords[1], rx1, ry1, rx2, ry2);
break;
case PathIterator.SEG_QUADTO:
count = intersectQuad(cx, cy, coords[0], coords[1], cx = coords[2], cy = coords[3], rx1, ry1, rx2, ry2);
break;
case PathIterator.SEG_CUBICTO:
count = intersectCubic(cx, cy, coords[0], coords[1], coords[2], coords[3], cx = coords[4], cy = coords[5], rx1, ry1, rx2, ry2);
break;
case PathIterator.SEG_CLOSE:
if (cy != my || cx != mx) {
count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2);
}
cx = mx;
cy = my;
break;
}
if (count == CROSSING) {
return CROSSING;
}
cross += count;
p.next();
}
if (cy != my) {
count = intersectLine(cx, cy, mx, my, rx1, ry1, rx2, ry2);
if (count == CROSSING) {
return CROSSING;
}
cross += count;
}
return cross;
}
/**
* Returns how many times rectangle stripe cross shape or the are intersect
*/
public static int intersectShape(Shape s, double x, double y, double w, double h) {
if (!s.getBounds2D().intersects(x, y, w, h)) {
return 0;
}
return intersectPath(s.getPathIterator(null), x, y, w, h);
}
/**
* Returns true if cross count correspond inside location for non zero path rule
*/
public static boolean isInsideNonZero(int cross) {
return cross != 0;
}
/**
* Returns true if cross count correspond inside location for even-odd path rule
*/
public static boolean isInsideEvenOdd(int cross) {
return (cross & 1) != 0;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy