com.mxgraph.util.mxCurve Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jgraphx Show documentation
Show all versions of jgraphx Show documentation
JGraphX is a Java Swing diagramming (graph visualisation) library
/**
* Copyright (c) 2009-2012, JGraph Ltd
*/
package com.mxgraph.util;
import java.awt.Rectangle;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Hashtable;
import java.util.List;
import java.util.Map;
public class mxCurve
{
/**
* A collection of arrays of curve points
*/
protected Map points;
// Rectangle just completely enclosing branch and label/
protected double minXBounds = 10000000;
protected double maxXBounds = 0;
protected double minYBounds = 10000000;
protected double maxYBounds = 0;
/**
* An array of arrays of intervals. These intervals define the distance
* along the edge (0 to 1) that each point lies
*/
protected Map intervals;
/**
* The curve lengths of the curves
*/
protected Map curveLengths;
/**
* Defines the key for the central curve index
*/
public static String CORE_CURVE = "Center_curve";
/**
* Defines the key for the label curve index
*/
public static String LABEL_CURVE = "Label_curve";;
/**
* Indicates that an invalid position on a curve was requested
*/
public static mxLine INVALID_POSITION = new mxLine(new mxPoint(0, 0),
new mxPoint(1, 0));
/**
* Offset of the label curve from the curve the label curve is based on.
* If you wish to set this value, do so directly after creation of the curve.
* The first time the curve is used the label curve will be created with
* whatever value is contained in this variable. Changes to it after that point
* will have no effect.
*/
protected double labelBuffer = mxConstants.DEFAULT_LABEL_BUFFER;
/**
* The points this curve is drawn through. These are typically control
* points and are at distances from each other that straight lines
* between them do not describe a smooth curve. This class takes
* these guiding points and creates a finer set of internal points
* that visually appears to be a curve when linked by straight lines
*/
public List guidePoints = new ArrayList();
/**
* Whether or not the curve currently holds valid values
*/
protected boolean valid = false;
/**
*
*/
public void setLabelBuffer(double buffer)
{
labelBuffer = buffer;
}
/**
*
*/
public mxRectangle getBounds()
{
if (!valid)
{
createCoreCurve();
}
return new mxRectangle(minXBounds, minYBounds, maxXBounds - minXBounds,
maxYBounds - minYBounds);
}
/**
*
*/
public mxCurve()
{
}
/**
*
*/
public mxCurve(List points)
{
boolean nullPoints = false;
for (mxPoint point : points)
{
if (point == null)
{
nullPoints = true;
break;
}
}
if (!nullPoints)
{
guidePoints = new ArrayList(points);
}
}
/**
* Calculates the index of the lower point on the segment
* that contains the point distance along the
*/
protected int getLowerIndexOfSegment(String index, double distance)
{
double[] curveIntervals = getIntervals(index);
if (curveIntervals == null)
{
return 0;
}
int numIntervals = curveIntervals.length;
if (distance <= 0.0 || numIntervals < 3)
{
return 0;
}
if (distance >= 1.0)
{
return numIntervals - 2;
}
// Pick a starting index roughly where you expect the point
// to be
int testIndex = (int) (numIntervals * distance);
if (testIndex >= numIntervals)
{
testIndex = numIntervals - 1;
}
// The max and min indices tested so far
int lowerLimit = -1;
int upperLimit = numIntervals;
// It cannot take more than the number of intervals to find
// the correct segment
for (int i = 0; i < numIntervals; i++)
{
double segmentDistance = curveIntervals[testIndex];
double multiplier = 0.5;
if (distance < segmentDistance)
{
upperLimit = Math.min(upperLimit, testIndex);
multiplier = -0.5;
}
else if (distance > segmentDistance)
{
lowerLimit = Math.max(lowerLimit, testIndex);
}
else
{
// Values equal
if (testIndex == 0)
{
lowerLimit = 0;
upperLimit = 1;
}
else
{
lowerLimit = testIndex - 1;
upperLimit = testIndex;
}
}
int indexDifference = upperLimit - lowerLimit;
if (indexDifference == 1)
{
break;
}
testIndex = (int) (testIndex + indexDifference * multiplier);
if (testIndex == lowerLimit)
{
testIndex = lowerLimit + 1;
}
if (testIndex == upperLimit)
{
testIndex = upperLimit - 1;
}
}
if (lowerLimit != upperLimit - 1)
{
return -1;
}
return lowerLimit;
}
/**
* Returns a unit vector parallel to the curve at the specified
* distance along the curve. To obtain the angle the vector makes
* with (1,0) perform Math.atan(segVectorY/segVectorX).
* @param index the curve index specifying the curve to analyse
* @param distance the distance from start to end of curve (0.0...1.0)
* @return a unit vector at the specified point on the curve represented
* as a line, parallel with the curve. If the distance or curve is
* invalid, mxCurve.INVALID_POSITION
is returned
*/
public mxLine getCurveParallel(String index, double distance)
{
mxPoint[] pointsCurve = getCurvePoints(index);
double[] curveIntervals = getIntervals(index);
if (pointsCurve != null && pointsCurve.length > 0
&& curveIntervals != null && distance >= 0.0 && distance <= 1.0)
{
// If the curve is zero length, it will only have one point
// We can't calculate in this case
if (pointsCurve.length == 1)
{
mxPoint point = pointsCurve[0];
return new mxLine(point.getX(), point.getY(), new mxPoint(1, 0));
}
int lowerLimit = getLowerIndexOfSegment(index, distance);
mxPoint firstPointOfSeg = pointsCurve[lowerLimit];
double segVectorX = pointsCurve[lowerLimit + 1].getX()
- firstPointOfSeg.getX();
double segVectorY = pointsCurve[lowerLimit + 1].getY()
- firstPointOfSeg.getY();
double distanceAlongSeg = (distance - curveIntervals[lowerLimit])
/ (curveIntervals[lowerLimit + 1] - curveIntervals[lowerLimit]);
double segLength = Math.sqrt(segVectorX * segVectorX + segVectorY
* segVectorY);
double startPointX = firstPointOfSeg.getX() + segVectorX
* distanceAlongSeg;
double startPointY = firstPointOfSeg.getY() + segVectorY
* distanceAlongSeg;
mxPoint endPoint = new mxPoint(segVectorX / segLength, segVectorY
/ segLength);
return new mxLine(startPointX, startPointY, endPoint);
}
else
{
return INVALID_POSITION;
}
}
/**
* Returns a section of the curve as an array of points
* @param index the curve index specifying the curve to analyse
* @param start the start position of the curve segment (0.0...1.0)
* @param end the end position of the curve segment (0.0...1.0)
* @return a sequence of point representing the curve section or null
* if it cannot be calculated
*/
public mxPoint[] getCurveSection(String index, double start, double end)
{
mxPoint[] pointsCurve = getCurvePoints(index);
double[] curveIntervals = getIntervals(index);
if (pointsCurve != null && pointsCurve.length > 0
&& curveIntervals != null && start >= 0.0 && start <= 1.0
&& end >= 0.0 && end <= 1.0)
{
// If the curve is zero length, it will only have one point
// We can't calculate in this case
if (pointsCurve.length == 1)
{
mxPoint point = pointsCurve[0];
return new mxPoint[] { new mxPoint(point.getX(), point.getY()) };
}
int lowerLimit = getLowerIndexOfSegment(index, start);
mxPoint firstPointOfSeg = pointsCurve[lowerLimit];
double segVectorX = pointsCurve[lowerLimit + 1].getX()
- firstPointOfSeg.getX();
double segVectorY = pointsCurve[lowerLimit + 1].getY()
- firstPointOfSeg.getY();
double distanceAlongSeg = (start - curveIntervals[lowerLimit])
/ (curveIntervals[lowerLimit + 1] - curveIntervals[lowerLimit]);
mxPoint startPoint = new mxPoint(firstPointOfSeg.getX()
+ segVectorX * distanceAlongSeg, firstPointOfSeg.getY()
+ segVectorY * distanceAlongSeg);
List result = new ArrayList();
result.add(startPoint);
double current = start;
current = curveIntervals[++lowerLimit];
while (current <= end)
{
mxPoint nextPointOfSeg = pointsCurve[lowerLimit];
result.add(nextPointOfSeg);
current = curveIntervals[++lowerLimit];
}
// Add whatever proportion of the last segment has to
// be added to make the exactly end distance
if (lowerLimit > 0 && lowerLimit < pointsCurve.length
&& end > curveIntervals[lowerLimit - 1])
{
firstPointOfSeg = pointsCurve[lowerLimit - 1];
segVectorX = pointsCurve[lowerLimit].getX()
- firstPointOfSeg.getX();
segVectorY = pointsCurve[lowerLimit].getY()
- firstPointOfSeg.getY();
distanceAlongSeg = (end - curveIntervals[lowerLimit - 1])
/ (curveIntervals[lowerLimit] - curveIntervals[lowerLimit - 1]);
mxPoint endPoint = new mxPoint(firstPointOfSeg.getX()
+ segVectorX * distanceAlongSeg, firstPointOfSeg.getY()
+ segVectorY * distanceAlongSeg);
result.add(endPoint);
}
mxPoint[] resultArray = new mxPoint[result.size()];
return result.toArray(resultArray);
}
else
{
return null;
}
}
/**
* Returns whether or not the rectangle passed in hits any part of this
* curve.
* @param rect the rectangle to detect for a hit
* @return whether or not the rectangle hits this curve
*/
public boolean intersectsRect(Rectangle rect)
{
// To save CPU, we can test if the rectangle intersects the entire
// bounds of this curve
if (!getBounds().getRectangle().intersects(rect))
{
return false;
}
mxPoint[] pointsCurve = getCurvePoints(mxCurve.CORE_CURVE);
if (pointsCurve != null && pointsCurve.length > 1)
{
mxRectangle mxRect = new mxRectangle(rect);
// First check for any of the curve points lying within the
// rectangle, then for any of the curve segments intersecting
// with the rectangle sides
for (int i = 1; i < pointsCurve.length; i++)
{
if (mxRect.contains(pointsCurve[i].getX(),
pointsCurve[i].getY())
|| mxRect.contains(pointsCurve[i - 1].getX(),
pointsCurve[i - 1].getY()))
{
return true;
}
}
for (int i = 1; i < pointsCurve.length; i++)
{
if (mxRect.intersectLine(pointsCurve[i].getX(),
pointsCurve[i].getY(), pointsCurve[i - 1].getX(),
pointsCurve[i - 1].getY()) != null)
{
return true;
}
}
}
return false;
}
/**
* Returns the point at which this curve intersects the boundary of
* the given rectangle, if it does so. If it does not intersect,
* null is returned. If it intersects multiple times, the first
* intersection from the start end of the curve is returned.
*
* @param index the curve index specifying the curve to analyse
* @param rect the whose boundary is to be tested for intersection
* with this curve
* @return the point at which this curve intersects the boundary of
* the given rectangle, if it does so. If it does not intersect,
* null is returned.
*/
public mxPoint intersectsRectPerimeter(String index, mxRectangle rect)
{
mxPoint result = null;
mxPoint[] pointsCurve = getCurvePoints(index);
if (pointsCurve != null && pointsCurve.length > 1)
{
int crossingSeg = intersectRectPerimeterSeg(index, rect);
if (crossingSeg != -1)
{
result = intersectRectPerimeterPoint(index, rect, crossingSeg);
}
}
return result;
}
/**
* Returns the distance from the start of the curve at which this
* curve intersects the boundary of the given rectangle, if it does
* so. If it does not intersect, -1 is returned.
* If it intersects multiple times, the first intersection from
* the start end of the curve is returned.
*
* @param index the curve index specifying the curve to analyse
* @param rect the whose boundary is to be tested for intersection
* with this curve
* @return the distance along the curve from the start at which
* the intersection occurs
*/
public double intersectsRectPerimeterDist(String index, mxRectangle rect)
{
double result = -1;
mxPoint[] pointsCurve = getCurvePoints(index);
double[] curveIntervals = getIntervals(index);
if (pointsCurve != null && pointsCurve.length > 1)
{
int segIndex = intersectRectPerimeterSeg(index, rect);
mxPoint intersectPoint = null;
if (segIndex != -1)
{
intersectPoint = intersectRectPerimeterPoint(index, rect,
segIndex);
}
if (intersectPoint != null)
{
double startSegX = pointsCurve[segIndex - 1].getX();
double startSegY = pointsCurve[segIndex - 1].getY();
double distToStartSeg = curveIntervals[segIndex - 1]
* getCurveLength(index);
double intersectOffsetX = intersectPoint.getX() - startSegX;
double intersectOffsetY = intersectPoint.getY() - startSegY;
double lenToIntersect = Math.sqrt(intersectOffsetX
* intersectOffsetX + intersectOffsetY
* intersectOffsetY);
result = distToStartSeg + lenToIntersect;
}
}
return result;
}
/**
* Returns a point to move the input rectangle to, in order to
* attempt to place the rectangle away from the curve. NOTE: Curves
* are scaled, the input rectangle should be also.
* @param index the curve index specifying the curve to analyse
* @param rect the rectangle that is to be moved
* @param buffer the amount by which the rectangle is to be moved,
* beyond the dimensions of the rect
* @return the point to move the top left of the input rect to
* , otherwise null if no point can be determined
*/
public mxPoint collisionMove(String index, mxRectangle rect, double buffer)
{
int hitSeg = intersectRectPerimeterSeg(index, rect);
// Could test for a second hit (the rect exit, unless the same
// segment is entry and exit) and allow for that in movement.
if (hitSeg == -1)
{
return null;
}
else
{
mxPoint[] pointsCurve = getCurvePoints(index);
double x0 = pointsCurve[hitSeg - 1].getX();
double y0 = pointsCurve[hitSeg - 1].getY();
double x1 = pointsCurve[hitSeg].getX();
double y1 = pointsCurve[hitSeg].getY();
double x = rect.getX();
double y = rect.getY();
double width = rect.getWidth();
double height = rect.getHeight();
// Whether the intersection is one of the horizontal sides of the rect
@SuppressWarnings("unused")
boolean horizIncident = false;
mxPoint hitPoint = mxUtils.intersection(x, y, x + width, y, x0, y0, x1, y1);
if (hitPoint != null)
{
horizIncident = true;
}
else
{
hitPoint = mxUtils.intersection(x + width, y, x + width, y + height,
x0, y0, x1, y1);
}
if (hitPoint == null)
{
hitPoint = mxUtils.intersection(x + width, y + height, x, y + height,
x0, y0, x1, y1);
if (hitPoint != null)
{
horizIncident = true;
}
else
{
hitPoint = mxUtils.intersection(x, y, x, y + height, x0, y0, x1, y1);
}
}
if (hitPoint != null)
{
}
}
return null;
}
/**
* Utility method to determine within which segment the specified rectangle
* intersects the specified curve
*
* @param index the curve index specifying the curve to analyse
* @param rect the whose boundary is to be tested for intersection
* with this curve
* @return the point at which this curve intersects the boundary of
* the given rectangle, if it does so. If it does not intersect,
* -1 is returned
*/
protected int intersectRectPerimeterSeg(String index, mxRectangle rect)
{
return intersectRectPerimeterSeg(index, rect, 1);
}
/**
* Utility method to determine within which segment the specified rectangle
* intersects the specified curve. This method specifies which segment to
* start searching at.
*
* @param index the curve index specifying the curve to analyse
* @param rect the whose boundary is to be tested for intersection
* with this curve
* @param startSegment the segment to start searching at. To start at the
* beginning of the curve, use 1, not 0.
* @return the point at which this curve intersects the boundary of
* the given rectangle, if it does so. If it does not intersect,
* -1 is returned
*/
protected int intersectRectPerimeterSeg(String index, mxRectangle rect,
int startSegment)
{
mxPoint[] pointsCurve = getCurvePoints(index);
if (pointsCurve != null && pointsCurve.length > 1)
{
for (int i = startSegment; i < pointsCurve.length; i++)
{
if (rect.intersectLine(pointsCurve[i].getX(),
pointsCurve[i].getY(), pointsCurve[i - 1].getX(),
pointsCurve[i - 1].getY()) != null)
{
return i;
}
}
}
return -1;
}
/**
* Returns the point at which this curve segment intersects the boundary
* of the given rectangle, if it does so. If it does not intersect,
* null is returned.
*
* @param curveIndex the curve index specifying the curve to analyse
* @param rect the whose boundary is to be tested for intersection
* with this curve
* @param indexSeg the segments on this curve being checked
* @return the point at which this curve segment intersects the boundary
* of the given rectangle, if it does so. If it does not intersect,
* null is returned.
*/
protected mxPoint intersectRectPerimeterPoint(String curveIndex,
mxRectangle rect, int indexSeg)
{
mxPoint result = null;
mxPoint[] pointsCurve = getCurvePoints(curveIndex);
if (pointsCurve != null && pointsCurve.length > 1 && indexSeg >= 0
&& indexSeg < pointsCurve.length)
{
double p1X = pointsCurve[indexSeg - 1].getX();
double p1Y = pointsCurve[indexSeg - 1].getY();
double p2X = pointsCurve[indexSeg].getX();
double p2Y = pointsCurve[indexSeg].getY();
result = rect.intersectLine(p1X, p1Y, p2X, p2Y);
}
return result;
}
/**
* Calculates the position of an absolute in terms relative
* to this curve.
*
* @param absPoint the point whose relative point is to calculated
* @param index the index of the curve whom the relative position is to be
* calculated from
* @return an mxRectangle where the x is the distance along the curve
* (0 to 1), y is the orthogonal offset from the closest segment on the
* curve and (width, height) is an additional Cartesian offset applied
* after the other calculations
*/
public mxRectangle getRelativeFromAbsPoint(mxPoint absPoint, String index)
{
// Work out which segment the absolute point is closest to
mxPoint[] currentCurve = getCurvePoints(index);
double[] currentIntervals = getIntervals(index);
int closestSegment = 0;
double closestSegDistSq = 10000000;
mxLine segment = new mxLine(currentCurve[0], currentCurve[1]);
for (int i = 1; i < currentCurve.length; i++)
{
segment.setPoints(currentCurve[i - 1], currentCurve[i]);
double segDistSq = segment.ptSegDistSq(absPoint);
if (segDistSq < closestSegDistSq)
{
closestSegDistSq = segDistSq;
closestSegment = i - 1;
}
}
// Get the distance (squared) from the point to the
// infinitely extrapolated line created by the closest
// segment. If that value is the same as the distance
// to the segment then an orthogonal offset from some
// point on the line will intersect the point. If they
// are not equal, an additional cartesian offset is
// required
mxPoint startSegPt = currentCurve[closestSegment];
mxPoint endSegPt = currentCurve[closestSegment + 1];
mxLine closestSeg = new mxLine(startSegPt, endSegPt);
double lineDistSq = closestSeg.ptLineDistSq(absPoint);
double orthogonalOffset = Math.sqrt(Math.min(lineDistSq,
closestSegDistSq));
double segX = endSegPt.getX() - startSegPt.getX();
double segY = endSegPt.getY() - startSegPt.getY();
double segDist = Math.sqrt(segX * segX + segY * segY);
double segNormX = segX / segDist;
double segNormY = segY / segDist;
// The orthogonal offset could be in one of two opposite vectors
// Try both solutions, one will be closer to one of the segment
// end points (unless the point is on the line)
double candidateOffX1 = (absPoint.getX() - segNormY * orthogonalOffset)
- endSegPt.getX();
double candidateOffY1 = (absPoint.getY() + segNormX * orthogonalOffset)
- endSegPt.getY();
double candidateOffX2 = (absPoint.getX() + segNormY * orthogonalOffset)
- endSegPt.getX();
double candidateOffY2 = (absPoint.getY() - segNormX * orthogonalOffset)
- endSegPt.getY();
double candidateDist1 = (candidateOffX1 * candidateOffX1)
+ (candidateOffY1 * candidateOffY1);
double candidateDist2 = (candidateOffX2 * candidateOffX2)
+ (candidateOffY2 * candidateOffY2);
double orthOffsetPointX = 0;
double orthOffsetPointY = 0;
if (candidateDist2 < candidateDist1)
{
orthogonalOffset = -orthogonalOffset;
}
orthOffsetPointX = absPoint.getX() - segNormY * orthogonalOffset;
orthOffsetPointY = absPoint.getY() + segNormX * orthogonalOffset;
double distAlongEdge = 0;
double cartOffsetX = 0;
double cartOffsetY = 0;
// Don't compare for exact equality, there are often rounding errors
if (Math.abs(closestSegDistSq - lineDistSq) > 0.0001)
{
// The orthogonal offset does not move the point onto the
// segment. Work out an additional cartesian offset that moves
// the offset point onto the closest end point of the
// segment
// Not exact distances, but the equation holds
double distToStartPoint = Math.abs(orthOffsetPointX
- startSegPt.getX())
+ Math.abs(orthOffsetPointY - startSegPt.getY());
double distToEndPoint = Math
.abs(orthOffsetPointX - endSegPt.getX())
+ Math.abs(orthOffsetPointY - endSegPt.getY());
if (distToStartPoint < distToEndPoint)
{
distAlongEdge = currentIntervals[closestSegment];
cartOffsetX = orthOffsetPointX - startSegPt.getX();
cartOffsetY = orthOffsetPointY - startSegPt.getY();
}
else
{
distAlongEdge = currentIntervals[closestSegment + 1];
cartOffsetX = orthOffsetPointX - endSegPt.getX();
cartOffsetY = orthOffsetPointY - endSegPt.getY();
}
}
else
{
// The point, when orthogonally offset, lies on the segment
// work out what proportion along the segment, and therefore
// the entire curve, the offset point lies.
double segmentLen = Math.sqrt((endSegPt.getX() - startSegPt.getX())
* (endSegPt.getX() - startSegPt.getX())
+ (endSegPt.getY() - startSegPt.getY())
* (endSegPt.getY() - startSegPt.getY()));
double offsetLen = Math.sqrt((orthOffsetPointX - startSegPt.getX())
* (orthOffsetPointX - startSegPt.getX())
+ (orthOffsetPointY - startSegPt.getY())
* (orthOffsetPointY - startSegPt.getY()));
double proportionAlongSeg = offsetLen / segmentLen;
double segProportingDiff = currentIntervals[closestSegment + 1]
- currentIntervals[closestSegment];
distAlongEdge = currentIntervals[closestSegment]
+ segProportingDiff * proportionAlongSeg;
}
if (distAlongEdge > 1.0)
{
distAlongEdge = 1.0;
}
return new mxRectangle(distAlongEdge, orthogonalOffset, cartOffsetX,
cartOffsetY);
}
/**
* Creates the core curve that is based on the guide points passed into
* this class instance
*/
protected void createCoreCurve()
{
// Curve is marked invalid until all of the error situations have
// been checked
valid = false;
if (guidePoints == null || guidePoints.isEmpty())
{
return;
}
for (int i = 0; i < guidePoints.size(); i++)
{
if (guidePoints.get(i) == null)
{
return;
}
}
// Reset the cached bounds value
minXBounds = minYBounds = 10000000;
maxXBounds = maxYBounds = 0;
mxSpline spline = new mxSpline(guidePoints);
// Need the rough length of the spline, so we can get
// more samples for longer edges
double lengthSpline = spline.getLength();
// Check for errors in the spline calculation or zero length curves
if (Double.isNaN(lengthSpline) || !spline.checkValues()
|| lengthSpline < 1)
{
return;
}
mxSpline1D splineX = spline.getSplineX();
mxSpline1D splineY = spline.getSplineY();
double baseInterval = 12.0 / lengthSpline;
double minInterval = 1.0 / lengthSpline;
// Store the last two spline positions. If the next position is
// very close to where the extrapolation of the last two points
// then double the interval. This diviation is terms the "flatness".
// There is a range where the interval is kept the same, any
// variation from this range of flatness invokes a proportional
// adjustment to try to reenter the range without
// over compensating
double interval = baseInterval;
// These deviations are only tested against either
// dimension individually, working out the correct
// distance is too computationally intensive
double minDeviation = 0.15;
double maxDeviation = 0.3;
double preferedDeviation = (maxDeviation + minDeviation) / 2.0;
// x1, y1 are the position two iterations ago, x2, y2
// the position on the last iteration
double x1 = -1.0;
double x2 = -1.0;
double y1 = -1.0;
double y2 = -1.0;
// Store the change in interval amount between iterations.
// If it changes the extrapolation calculation must
// take this into account.
double intervalChange = 1;
List coreCurve = new ArrayList();
List coreIntervals = new ArrayList();
boolean twoLoopsComplete = false;
for (double t = 0; t <= 1.5; t += interval)
{
if (t > 1.0)
{
// Use the point regardless of the accuracy,
t = 1.0001;
mxPoint endControlPoint = guidePoints
.get(guidePoints.size() - 1);
mxPoint finalPoint = new mxPoint(endControlPoint.getX(),
endControlPoint.getY());
coreCurve.add(finalPoint);
coreIntervals.add(t);
updateBounds(endControlPoint.getX(), endControlPoint.getY());
break;
}
// Whether or not the accuracy of the current point is acceptable
boolean currentPointAccepted = true;
double newX = splineX.getFastValue(t);
double newY = splineY.getFastValue(t);
// Check if the last points are valid (indicated by
// dissimilar values)
// Check we're not in the first, second or last run
if (x1 != -1.0 && twoLoopsComplete && t != 1.0001)
{
// Work out how far the new spline point
// deviates from the extrapolation created
// by the last two points
double diffX = Math.abs(((x2 - x1) * intervalChange + x2)
- newX);
double diffY = Math.abs(((y2 - y1) * intervalChange + y2)
- newY);
// If either the x or y of the straight line
// extrapolation from the last two points
// is more than the 1D deviation allowed
// go back and re-calculate with a smaller interval
// It's possible that the edge has curved too fast
// for the algorithmn. If the interval is
// reduced to less than the minimum permitted
// interval, it may be that it's impossible
// to get within the deviation because of
// the extrapolation overshoot. The minimum
// interval is set to draw correctly for the
// vast majority of cases.
if ((diffX > maxDeviation || diffY > maxDeviation)
&& interval != minInterval)
{
double overshootProportion = maxDeviation
/ Math.max(diffX, diffY);
if (interval * overshootProportion <= minInterval)
{
// Set the interval
intervalChange = minInterval / interval;
}
else
{
// The interval can still be reduced, half
// the interval and go back and redo
// this iteration
intervalChange = overshootProportion;
}
t -= interval;
interval *= intervalChange;
currentPointAccepted = false;
}
else if (diffX < minDeviation && diffY < minDeviation)
{
intervalChange = 1.4;
interval *= intervalChange;
}
else
{
// Try to keep the deviation around the prefered value
double errorRatio = preferedDeviation
/ Math.max(diffX, diffY);
intervalChange = errorRatio / 4.0;
interval *= intervalChange;
}
if (currentPointAccepted)
{
x1 = x2;
y1 = y2;
x2 = newX;
y2 = newY;
}
}
else if (x1 == -1.0)
{
x1 = x2 = newX;
y1 = y2 = newY;
}
else if (x1 == x2 && y1 == y2)
{
x2 = newX;
y2 = newY;
twoLoopsComplete = true;
}
if (currentPointAccepted)
{
mxPoint newPoint = new mxPoint(newX, newY);
coreCurve.add(newPoint);
coreIntervals.add(t);
updateBounds(newX, newY);
}
}
if (coreCurve.size() < 2)
{
// A single point makes no sense, leave the curve as invalid
return;
}
mxPoint[] corePoints = new mxPoint[coreCurve.size()];
int count = 0;
for (mxPoint point : coreCurve)
{
corePoints[count++] = point;
}
points = new Hashtable();
curveLengths = new Hashtable();
points.put(CORE_CURVE, corePoints);
curveLengths.put(CORE_CURVE, lengthSpline);
double[] coreIntervalsArray = new double[coreIntervals.size()];
count = 0;
for (Double tempInterval : coreIntervals)
{
coreIntervalsArray[count++] = tempInterval.doubleValue();
}
intervals = new Hashtable();
intervals.put(CORE_CURVE, coreIntervalsArray);
valid = true;
}
/** Whether or not the label curve starts from the end target
* and traces to the start of the branch
* @return whether the label curve is reversed
*/
public boolean isLabelReversed()
{
if (valid)
{
mxPoint[] centralCurve = getCurvePoints(CORE_CURVE);
if (centralCurve != null)
{
double changeX = centralCurve[centralCurve.length - 1].getX()
- centralCurve[0].getX();
if (changeX < 0)
{
return true;
}
}
}
return false;
}
protected void createLabelCurve()
{
// Place the label on the "high" side of the vector
// joining the start and end points of the curve
mxPoint[] currentCurve = getBaseLabelCurve();
boolean labelReversed = isLabelReversed();
List labelCurvePoints = new ArrayList();
// Lower and upper curve start from the very ends
// of their curves, so given that their middle points
// are derived from the center of the central points
// they will contain one more point and both
// side curves contain the same end point
for (int i = 1; i < currentCurve.length; i++)
{
int currentIndex = i;
int lastIndex = i - 1;
if (labelReversed)
{
currentIndex = currentCurve.length - i - 1;
lastIndex = currentCurve.length - i;
}
mxPoint segStartPoint = currentCurve[currentIndex];
mxPoint segEndPoint = currentCurve[lastIndex];
double segVectorX = segEndPoint.getX() - segStartPoint.getX();
double segVectorY = segEndPoint.getY() - segStartPoint.getY();
double segVectorLength = Math.sqrt(segVectorX * segVectorX
+ segVectorY * segVectorY);
double normSegVectorX = segVectorX / segVectorLength;
double normSegVectorY = segVectorY / segVectorLength;
double centerSegX = (segEndPoint.getX() + segStartPoint.getX()) / 2.0;
double centerSegY = (segEndPoint.getY() + segStartPoint.getY()) / 2.0;
if (i == 1)
{
// Special case to work out the very end points at
// the start of the curve
mxPoint startPoint = new mxPoint(segEndPoint.getX()
- (normSegVectorY * labelBuffer), segEndPoint.getY()
+ (normSegVectorX * labelBuffer));
labelCurvePoints.add(startPoint);
updateBounds(startPoint.getX(), startPoint.getY());
}
double pointX = centerSegX - (normSegVectorY * labelBuffer);
double pointY = centerSegY + (normSegVectorX * labelBuffer);
mxPoint labelCurvePoint = new mxPoint(pointX, pointY);
updateBounds(pointX, pointY);
labelCurvePoints.add(labelCurvePoint);
if (i == currentCurve.length - 1)
{
// Special case to work out the very end points at
// the start of the curve
mxPoint endPoint = new mxPoint(segStartPoint.getX()
- (normSegVectorY * labelBuffer), segStartPoint.getY()
+ (normSegVectorX * labelBuffer));
labelCurvePoints.add(endPoint);
updateBounds(endPoint.getX(), endPoint.getY());
}
}
mxPoint[] tmpPoints = new mxPoint[labelCurvePoints.size()];
points.put(LABEL_CURVE, labelCurvePoints.toArray(tmpPoints));
populateIntervals(LABEL_CURVE);
}
/**
* Returns the curve the label curve is too be based on
*/
protected mxPoint[] getBaseLabelCurve()
{
return getCurvePoints(CORE_CURVE);
}
protected void populateIntervals(String index)
{
mxPoint[] currentCurve = points.get(index);
double[] newIntervals = new double[currentCurve.length];
double totalLength = 0.0;
newIntervals[0] = 0;
for (int i = 0; i < currentCurve.length - 1; i++)
{
double changeX = currentCurve[i + 1].getX()
- currentCurve[i].getX();
double changeY = currentCurve[i + 1].getY()
- currentCurve[i].getY();
double segLength = Math.sqrt(changeX * changeX + changeY * changeY);
// We initially fill the intervals with the total distance to
// the end of this segment then later normalize all the values
totalLength += segLength;
// The first index was populated before the loop (and is always 0)
newIntervals[i + 1] = totalLength;
}
// Normalize the intervals
for (int j = 0; j < newIntervals.length; j++)
{
if (j == newIntervals.length - 1)
{
// Make the final interval slightly over
// 1.0 so any analysis to find the lower
newIntervals[j] = 1.0001;
}
else
{
newIntervals[j] = newIntervals[j] / totalLength;
}
}
intervals.put(index, newIntervals);
curveLengths.put(index, totalLength);
}
/**
* Updates the existing curve using the points passed in.
* @param newPoints the new guide points
*/
public void updateCurve(List newPoints)
{
boolean pointsChanged = false;
// If any of the new points are null, ignore the list
for (mxPoint point : newPoints)
{
if (point == null)
{
return;
}
}
if (newPoints.size() != guidePoints.size())
{
pointsChanged = true;
}
else
{
// Check for a constant translation of all guide points. In that
// case apply the translation directly to all curves.
// Also check whether all of the translations are trivial
if (newPoints.size() == guidePoints.size() && newPoints.size() > 1
&& guidePoints.size() > 1)
{
boolean constantTranslation = true;
boolean trivialTranslation = true;
mxPoint newPoint0 = newPoints.get(0);
mxPoint oldPoint0 = guidePoints.get(0);
double transX = newPoint0.getX() - oldPoint0.getX();
double transY = newPoint0.getY() - oldPoint0.getY();
if (Math.abs(transX) > 0.01 || Math.abs(transY) > 0.01)
{
trivialTranslation = false;
}
for (int i = 1; i < newPoints.size(); i++)
{
double nextTransX = newPoints.get(i).getX()
- guidePoints.get(i).getX();
double nextTransY = newPoints.get(i).getY()
- guidePoints.get(i).getY();
if (Math.abs(transX - nextTransX) > 0.01
|| Math.abs(transY - nextTransY) > 0.01)
{
constantTranslation = false;
}
if (Math.abs(nextTransX) > 0.01
|| Math.abs(nextTransY) > 0.01)
{
trivialTranslation = false;
}
}
if (trivialTranslation)
{
pointsChanged = false;
}
else if (constantTranslation)
{
pointsChanged = false;
// Translate all stored points by the translation amounts
Collection curves = points.values();
// Update all geometry information held by the curve
// That is, all the curve points, the guide points
// and the cached bounds
for (mxPoint[] curve : curves)
{
for (int i = 0; i < curve.length; i++)
{
curve[i].setX(curve[i].getX() + transX);
curve[i].setY(curve[i].getY() + transY);
}
}
guidePoints = new ArrayList(newPoints);
minXBounds += transX;
minYBounds += transY;
maxXBounds += transX;
maxYBounds += transY;
}
else
{
pointsChanged = true;
}
}
}
if (pointsChanged)
{
guidePoints = new ArrayList(newPoints);
points = new Hashtable();
valid = false;
}
}
/**
* Obtains the points that make up the curve for the specified
* curve index. If that curve, or the core curve that other curves
* are based on have not yet been created, then they are lazily
* created. If creation is impossible, null is returned
* @param index the key specifying the curve
* @return the points making up that curve, or null
*/
public mxPoint[] getCurvePoints(String index)
{
if (validateCurve())
{
if (points.get(LABEL_CURVE) == null && index == LABEL_CURVE)
{
createLabelCurve();
}
return points.get(index);
}
return null;
}
public double[] getIntervals(String index)
{
if (validateCurve())
{
if (points.get(LABEL_CURVE) == null && index == LABEL_CURVE)
{
createLabelCurve();
}
return intervals.get(index);
}
return null;
}
public double getCurveLength(String index)
{
if (validateCurve())
{
if (intervals.get(index) == null)
{
createLabelCurve();
}
return curveLengths.get(index);
}
return 0;
}
/**
* Method must be called before any attempt to access curve information
* @return whether or not the curve may be used
*/
protected boolean validateCurve()
{
if (!valid)
{
createCoreCurve();
}
return valid;
}
/**
* Updates the total bounds of this curve, increasing any dimensions,
* if necessary, to fit in the specified point
*/
protected void updateBounds(double pointX, double pointY)
{
minXBounds = Math.min(minXBounds, pointX);
maxXBounds = Math.max(maxXBounds, pointX);
minYBounds = Math.min(minYBounds, pointY);
maxYBounds = Math.max(maxYBounds, pointY);
}
/**
* @return the guidePoints
*/
public List getGuidePoints()
{
return guidePoints;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy