All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.carrotsearch.hppcrt.maps.IntDoubleOpenCustomHashMap Maven / Gradle / Ivy

Go to download

High Performance Primitive Collections Realtime (fork of HPPC of Carrotsearch) Fundamental data structures (maps, sets, lists, stacks, queues, heaps, sorts) generated for combinations of object and primitive types to conserve JVM memory and speed up execution. The Realtime fork intend of extending collections while tweaking and optimizations to remove any dynamic allocations at runtime, and low variance execution times.

There is a newer version: 0.7.5
Show newest version
package com.carrotsearch.hppcrt.maps;

import com.carrotsearch.hppcrt.*;
import com.carrotsearch.hppcrt.cursors.*;
import com.carrotsearch.hppcrt.predicates.*;
import com.carrotsearch.hppcrt.procedures.*;
import com.carrotsearch.hppcrt.strategies.*;
import com.carrotsearch.hppcrt.hash.*;

  
  
  
  
//If RH is defined, RobinHood Hashing is in effect :
  

/**
 * A hash map of int to double, implemented using open
 * addressing with linear probing for collision resolution.
 *
 * The difference with {@link IntDoubleOpenHashMap} is that it uses a
 * {@link IntHashingStrategy} to compare objects externally instead of using
 * the built-in hashCode() /  equals(). In particular, the management of null
 * keys is up to the {@link IntHashingStrategy} implementation.
 * The internal buffers of this implementation ({@link #keys}, {@link #values})
 * are always allocated to the nearest size that is a power of two. When
 * the capacity exceeds the given load factor, the buffer size is doubled.
 * 

*

Important note. The implementation uses power-of-two tables and linear * probing, which may cause poor performance (many collisions) if hash values are * not properly distributed. Therefore, it is up to the {@link IntHashingStrategy} to * assure good performance.

* * * @author This code is inspired by the collaboration and implementation in the fastutil project. * *

Robin-Hood hashing algorithm is also used to minimize variance * in insertion and search-related operations, for an all-around smother operation at the cost * of smaller peak performance:

*

- Pedro Celis (1986) for the original Robin-Hood hashing paper,

*

- MoonPolySoft/Cliff Moon for the initial Robin-hood on HPPC implementation,

*

- Vincent Sonnier for the present implementation using cached hashes.

* */ @javax.annotation.Generated(date = "2015-02-27T19:21:08+0100", value = "HPPC-RT generated from: IntDoubleOpenCustomHashMap.java") public class IntDoubleOpenCustomHashMap implements IntDoubleMap, Cloneable { /** * Minimum capacity for the map. */ public final static int MIN_CAPACITY = HashContainerUtils.MIN_CAPACITY; /** * Default capacity. */ public final static int DEFAULT_CAPACITY = HashContainerUtils.DEFAULT_CAPACITY; /** * Default load factor. */ public final static float DEFAULT_LOAD_FACTOR = HashContainerUtils.DEFAULT_LOAD_FACTOR; protected double defaultValue = (0.0); /** * Hash-indexed array holding all keys. *

* Direct map iteration: iterate {keys[i], values[i]} for i in [0; keys.length[ where keys[i] != 0/null, then also * {0/null, {@link #allocatedDefaultKeyValue} } is in the map if {@link #allocatedDefaultKey} = true. *

* *

Direct iteration warning: * If the iteration goal is to fill another hash container, please iterate {@link #keys} in reverse to prevent performance losses. * @see #values */ public int[] keys; /** * Hash-indexed array holding all values associated to the keys. * stored in {@link #keys}. * * @see #keys */ public double[] values; /** * * Caches the hash value = HASH(keys[i]) & mask, if keys[i] != 0/null, * for every index i. * * @see #assigned */ protected int[] hash_cache; /** *True if key = 0/null is in the map. */ public boolean allocatedDefaultKey = false; /** * if allocatedDefaultKey = true, contains the associated V to the key = 0/null */ public double allocatedDefaultKeyValue; /** * Cached number of assigned slots in {@link #keys}. */ protected int assigned; /** * The load factor for this map (fraction of allocated slots * before the buffers must be rehashed or reallocated). */ protected final float loadFactor; /** * Resize buffers when {@link #keys} hits this value. */ protected int resizeAt; /** * The most recent slot accessed in {@link #containsKey} (required for * {@link #lget}). * * @see #containsKey * @see #lget */ protected int lastSlot; /** * Custom hashing strategy : * comparisons and hash codes of keys will be computed * with the strategy methods instead of the native Object equals() and hashCode() methods. */ protected final IntHashingStrategy hashStrategy; /** * Creates a hash map with the default capacity of {@value #DEFAULT_CAPACITY}, * load factor of {@value #DEFAULT_LOAD_FACTOR}, using the hashStrategy as {@link IntHashingStrategy} * *

See class notes about hash distribution importance.

*/ public IntDoubleOpenCustomHashMap(final IntHashingStrategy hashStrategy) { this(IntDoubleOpenCustomHashMap.DEFAULT_CAPACITY, hashStrategy); } /** * Creates a hash map with the given initial capacity, default load factor of * {@value #DEFAULT_LOAD_FACTOR}, using the hashStrategy as {@link IntHashingStrategy} * * @param initialCapacity Initial capacity (greater than zero and automatically * rounded to the next power of two). */ public IntDoubleOpenCustomHashMap(final int initialCapacity, final IntHashingStrategy hashStrategy) { this(initialCapacity, IntDoubleOpenCustomHashMap.DEFAULT_LOAD_FACTOR, hashStrategy); } /** * Creates a hash map with the given initial capacity, * load factor, using the hashStrategy as {@link IntHashingStrategy} * * @param initialCapacity Initial capacity (greater than zero and automatically * rounded to the next power of two). * * @param loadFactor The load factor (greater than zero and smaller than 1). * * */ public IntDoubleOpenCustomHashMap(final int initialCapacity, final float loadFactor, final IntHashingStrategy hashStrategy) { //only accept not-null strategies. if (hashStrategy != null) { this.hashStrategy = hashStrategy; } else { throw new IllegalArgumentException("IntDoubleOpenCustomHashMap() cannot have a null hashStrategy !"); } assert loadFactor > 0 && loadFactor <= 1 : "Load factor must be between (0, 1]."; this.loadFactor = loadFactor; //take into account of the load factor to garantee no reallocations before reaching initialCapacity. int internalCapacity = (int) (initialCapacity / loadFactor) + IntDoubleOpenCustomHashMap.MIN_CAPACITY; //align on next power of two internalCapacity = HashContainerUtils.roundCapacity(internalCapacity); this.keys = (new int[internalCapacity]); this.values = (new double[internalCapacity]); this.hash_cache = new int[internalCapacity]; //Take advantage of the rounding so that the resize occur a bit later than expected. //allocate so that there is at least one slot that remains allocated = false //this is compulsory to guarantee proper stop in searching loops this.resizeAt = Math.max(3, (int) (internalCapacity * loadFactor)) - 2; } /** * Create a hash map from all key-value pairs of another container. */ public IntDoubleOpenCustomHashMap(final IntDoubleAssociativeContainer container, final IntHashingStrategy hashStrategy) { this(container.size(), hashStrategy); putAll(container); } /** * {@inheritDoc} */ @Override public double put(int key, double value) { if (key == (0)) { if (this.allocatedDefaultKey) { final double previousValue = this.allocatedDefaultKeyValue; this.allocatedDefaultKeyValue = value; return previousValue; } this.allocatedDefaultKeyValue = value; this.allocatedDefaultKey = true; return this.defaultValue; } final int mask = this.keys.length - 1; final IntHashingStrategy strategy = this.hashStrategy; final int[] keys = this.keys; final double[] values = this.values; //copied straight from fastutil "fast-path" int slot; int curr; //1.1 The rehashed key slot is occupied... if ((curr = keys[slot = PhiMix.hash(strategy.computeHashCode(key)) & mask]) != (0)) { //1.2 the occupied place is indeed key, so only updates the value and nothing else. if (strategy.equals(curr, key)) { final double oldValue = this.values[slot]; values[slot] = value; return oldValue; } //1.3 key is colliding, manage below : } else if (this.assigned < this.resizeAt) { //1.4 key is not colliding, without resize, so insert, return defaultValue. keys[slot] = key; values[slot] = value; this.assigned++; this.hash_cache[slot] = slot; return this.defaultValue; } final int[] cached = this.hash_cache; int tmpKey; double tmpValue; int tmpAllocated; int initial_slot = slot; int dist = 0; int existing_distance = 0; //2. Slow path, find a place somewhere down there... while ((keys[slot] != (0))) { if (strategy.equals(key, keys[slot])) { final double oldValue = values[slot]; values[slot] = value; return oldValue; } //re-shuffle keys to minimize variance existing_distance = (slot < cached[slot] ? slot + cached.length - cached[slot] : slot - cached[slot]); if (dist > existing_distance) { //swap current (key, value, initial_slot) with slot places tmpKey = keys[slot]; keys[slot] = key; key = tmpKey; tmpAllocated = cached[slot]; cached[slot] = initial_slot; initial_slot = tmpAllocated; tmpValue = values[slot]; values[slot] = value; value = tmpValue; dist = existing_distance; } slot = (slot + 1) & mask; dist++; } // Check if we need to grow. If so, reallocate new data, fill in the last element // and rehash. if (this.assigned == this.resizeAt) { expandAndPut(key, value, slot); } else { this.assigned++; cached[slot] = initial_slot; keys[slot] = key; values[slot] = value; } return this.defaultValue; } /** * {@inheritDoc} */ @Override public int putAll(final IntDoubleAssociativeContainer container) { return putAll((Iterable) container); } /** * {@inheritDoc} */ @Override public int putAll(final Iterable iterable) { final int count = this.size(); for (final IntDoubleCursor c : iterable) { put(c.key, c.value); } return this.size() - count; } /** * {@inheritDoc} */ @Override public boolean putIfAbsent(final int key, final double value) { if (!containsKey(key)) { put(key, value); return true; } return false; } /** * Trove-inspired API method. An equivalent * of the following code: *
     *  if (containsKey(key))
     *  {
     *      double v = (double) (lget() + additionValue);
     *      lset(v);
     *      return v;
     *  }
     *  else
     *  {
     *     put(key, putValue);
     *     return putValue;
     *  }
     * 
* * @param key The key of the value to adjust. * @param putValue The value to put if key does not exist. * @param additionValue The value to add to the existing value if key exists. * @return Returns the current value associated with key (after changes). */ @Override public double putOrAdd(int key, double putValue, double additionValue) { if ((0) == key) { if (this.allocatedDefaultKey) { this.allocatedDefaultKeyValue += additionValue; return this.allocatedDefaultKeyValue; } this.allocatedDefaultKeyValue = putValue; this.allocatedDefaultKey = true; return putValue; } final int mask = this.keys.length - 1; final int[] keys = this.keys; final double[] values = this.values; final IntHashingStrategy strategy = this.hashStrategy; double value = putValue; //copied straight from fastutil "fast-path" int slot; int curr; //1.1 The rehashed key slot is occupied... if ((curr = keys[slot = PhiMix.hash(strategy.computeHashCode(key)) & mask]) != (0)) { //1.2 the occupied place is indeed key, so only increments the value and nothing else. if (strategy.equals(curr, key)) { values[slot] += additionValue; return values[slot]; } //1.3 key is colliding, manage below : } else if (this.assigned < this.resizeAt) { //1.4 key is not colliding, without resize, so insert, return defaultValue. keys[slot] = key; values[slot] = value; this.assigned++; this.hash_cache[slot] = slot; return putValue; } final int[] cached = this.hash_cache; int tmpKey; double tmpValue; int tmpAllocated; int initial_slot = slot; int dist = 0; int existing_distance = 0; while ((keys[slot] != (0))) { existing_distance = (slot < cached[slot] ? slot + cached.length - cached[slot] : slot - cached[slot]); if (strategy.equals(key, keys[slot])) { values[slot] += additionValue; return values[slot]; } else if (dist > existing_distance) { //swap current (key, value, initial_slot) with slot places tmpKey = keys[slot]; keys[slot] = key; key = tmpKey; tmpValue = values[slot]; values[slot] = value; value = tmpValue; tmpAllocated = cached[slot]; cached[slot] = initial_slot; initial_slot = tmpAllocated; dist = existing_distance; } slot = (slot + 1) & mask; dist++; } if (assigned == resizeAt) { expandAndPut(key, value, slot); } else { assigned++; cached[slot] = initial_slot; keys[slot] = key; values[slot] = value; } return putValue; } /** * An equivalent of calling *
     *  if (containsKey(key))
     *  {
     *      double v = (double) (lget() + additionValue);
     *      lset(v);
     *      return v;
     *  }
     *  else
     *  {
     *     put(key, additionValue);
     *     return additionValue;
     *  }
     * 
* * @param key The key of the value to adjust. * @param additionValue The value to put or add to the existing value if key exists. * @return Returns the current value associated with key (after changes). */ @Override public double addTo(int key, double additionValue) { return putOrAdd(key, additionValue, additionValue); } /** * Expand the internal storage buffers (capacity) and rehash. */ private void expandAndPut(final int pendingKey, final double pendingValue, final int freeSlot) { assert this.assigned == this.resizeAt; //default sentinel value is never in the keys[] array, so never trigger reallocs assert pendingKey != (0); // Try to allocate new buffers first. If we OOM, it'll be now without // leaving the data structure in an inconsistent state. final int[] oldKeys = this.keys; final double[] oldValues = this.values; allocateBuffers(HashContainerUtils.nextCapacity(this.keys.length)); // We have succeeded at allocating new data so insert the pending key/value at // the free slot in the old arrays before rehashing. this.lastSlot = -1; this.assigned++; oldKeys[freeSlot] = pendingKey; oldValues[freeSlot] = pendingValue; //for inserts final int mask = this.keys.length - 1; final IntHashingStrategy strategy = this.hashStrategy; int key = (0); double value = (0.0); int slot = -1; final int[] keys = this.keys; final double[] values = this.values; final int[] cached = this.hash_cache; int tmpKey = (0); double tmpValue = (0.0); int tmpAllocated = -1; int initial_slot = -1; int dist = -1; int existing_distance = -1; //iterate all the old arrays to add in the newly allocated buffers //It is important to iterate backwards to minimize the conflict chain length ! for (int i = oldKeys.length; --i >= 0;) { if ((oldKeys[i] != (0))) { key = oldKeys[i]; value = oldValues[i]; slot = PhiMix.hash(strategy.computeHashCode(key)) & mask; initial_slot = slot; dist = 0; while ((keys[slot] != (0))) { //re-shuffle keys to minimize variance existing_distance = (slot < cached[slot] ? slot + cached.length - cached[slot] : slot - cached[slot]); if (dist > existing_distance) { //swap current (key, value, initial_slot) with slot places tmpKey = keys[slot]; keys[slot] = key; key = tmpKey; tmpAllocated = cached[slot]; cached[slot] = initial_slot; initial_slot = tmpAllocated; tmpValue = values[slot]; values[slot] = value; value = tmpValue; dist = existing_distance; } slot = (slot + 1) & mask; dist++; } //end while cached[slot] = initial_slot; keys[slot] = key; values[slot] = value; } } } /** * Allocate internal buffers for a given capacity. * * @param capacity New capacity (must be a power of two). */ private void allocateBuffers(final int capacity) { final int[] keys = (new int[capacity]); final double[] values = (new double[capacity]); final int[] cached = new int[capacity]; this.keys = keys; this.values = values; this.hash_cache = cached; //allocate so that there is at least one slot that remains allocated = false //this is compulsory to guarantee proper stop in searching loops this.resizeAt = Math.max(3, (int) (capacity * this.loadFactor)) - 2; } /** * {@inheritDoc} */ @Override public double remove(final int key) { if (key == (0)) { if (this.allocatedDefaultKey) { final double previousValue = this.allocatedDefaultKeyValue; this.allocatedDefaultKey = false; return previousValue; } return this.defaultValue; } final int mask = this.keys.length - 1; final int[] keys = this.keys; final double[] values = this.values; final IntHashingStrategy strategy = this.hashStrategy; //copied straight from fastutil "fast-path" int slot; int curr; //1.1 The rehashed slot is free, nothing to remove, return default value if ((curr = keys[slot = PhiMix.hash(strategy.computeHashCode(key)) & mask]) == (0)) { return this.defaultValue; } //1.2) The rehashed entry is occupied by the key, remove it, return value if (strategy.equals(curr, key)) { final double value = values[slot]; this.assigned--; shiftConflictingKeys(slot); return value; } //2. Hash collision, search for the key along the path slot = (slot + 1) & mask; int dist = 0; final int[] cached = this.hash_cache; //2. Slow path here while ((keys[slot] != (0)) && dist <= (slot < cached[slot] ? slot + cached.length - cached[slot] : slot - cached[slot]) ) { if (strategy.equals(key, keys[slot])) { final double value = values[slot]; this.assigned--; shiftConflictingKeys(slot); return value; } slot = (slot + 1) & mask; dist++; } //end while true return this.defaultValue; } /** * Shift all the slot-conflicting keys allocated to (and including) slot. */ protected void shiftConflictingKeys(int slotCurr) { // Copied nearly verbatim from fastutil's impl. final int mask = this.keys.length - 1; int slotPrev, slotOther; final IntHashingStrategy strategy = this.hashStrategy; final int[] keys = this.keys; final double[] values = this.values; final int[] cached = this.hash_cache; while (true) { slotCurr = ((slotPrev = slotCurr) + 1) & mask; while ((keys[slotCurr] != (0))) { //use the cached value, no need to recompute slotOther = cached[slotCurr]; if (slotPrev <= slotCurr) { // we're on the right of the original slot. if (slotPrev >= slotOther || slotOther > slotCurr) { break; } } else { // we've wrapped around. if (slotPrev >= slotOther && slotOther > slotCurr) { break; } } slotCurr = (slotCurr + 1) & mask; } if (!(keys[slotCurr] != (0))) { break; } // Shift key/value/allocated triplet. keys[slotPrev] = keys[slotCurr]; values[slotPrev] = values[slotCurr]; cached[slotPrev] = cached[slotCurr]; } //means not allocated keys[slotPrev] = (0); /* */ } /** * {@inheritDoc} */ @Override public int removeAll(final IntContainer container) { final int before = this.size(); for (final IntCursor cursor : container) { remove(cursor.value); } return before - this.size(); } /** * {@inheritDoc} *

Important! * If the predicate actually injects the removed keys in another hash container, you may experience performance losses. */ @Override public int removeAll(final IntPredicate predicate) { final int before = this.size(); if (this.allocatedDefaultKey) { if (predicate.apply((0))) { this.allocatedDefaultKey = false; } } final int[] keys = this.keys; for (int i = 0; i < keys.length;) { if ((keys[i] != (0))) { if (predicate.apply(keys[i])) { this.assigned--; shiftConflictingKeys(i); // Repeat the check for the same i. continue; } } i++; } return before - this.size(); } /** * {@inheritDoc} * *

Use the following snippet of code to check for key existence * first and then retrieve the value if it exists.

*
     * if (map.containsKey(key))
     *   value = map.lget();
     * 
*/ @Override public double get(final int key) { if (key == (0)) { if (this.allocatedDefaultKey) { return this.allocatedDefaultKeyValue; } return this.defaultValue; } final int mask = this.keys.length - 1; final IntHashingStrategy strategy = this.hashStrategy; final int[] keys = this.keys; final double[] values = this.values; //copied straight from fastutil "fast-path" int slot; int curr; //1.1 The rehashed slot is free, nothing to get, return default value if ((curr = keys[slot = PhiMix.hash(strategy.computeHashCode(key)) & mask]) == (0)) { return this.defaultValue; } //1.2) The rehashed entry is occupied by the key, return value if (strategy.equals(curr, key)) { return values[slot]; } //2. Hash collision, search for the key along the path slot = (slot + 1) & mask; int dist = 0; final int[] cached = this.hash_cache; while ((keys[slot] != (0)) && dist <= (slot < cached[slot] ? slot + cached.length - cached[slot] : slot - cached[slot]) ) { if (strategy.equals(key, keys[slot])) { return values[slot]; } slot = (slot + 1) & mask; dist++; } //end while true return this.defaultValue; } /** * Returns the last key stored in this has map for the corresponding * most recent call to {@link #containsKey}. * Precondition : {@link #containsKey} must have been called previously ! *

Use the following snippet of code to check for key existence * first and then retrieve the key value if it exists.

*
     * if (map.containsKey(key))
     *   value = map.lkey();
     * 
* *

This is equivalent to calling:

*
     * if (map.containsKey(key))
     *   key = map.keys[map.lslot()];
     * 
*/ public int lkey() { if (this.lastSlot == -2) { return (0); } assert this.lastSlot >= 0 : "Call containsKey() first."; assert (this.keys[this.lastSlot] != (0)) : "Last call to exists did not have any associated value."; return this.keys[this.lastSlot]; } /** * Returns the last value saved in a call to {@link #containsKey}. * Precondition : {@link #containsKey} must have been called previously ! * @see #containsKey */ public double lget() { if (this.lastSlot == -2) { return this.allocatedDefaultKeyValue; } assert this.lastSlot >= 0 : "Call containsKey() first."; assert (this.keys[this.lastSlot] != (0)) : "Last call to exists did not have any associated value."; return this.values[this.lastSlot]; } /** * Sets the value corresponding to the key saved in the last * call to {@link #containsKey}, if and only if the key exists * in the map already. * Precondition : {@link #containsKey} must have been called previously ! * @see #containsKey * @return Returns the previous value stored under the given key. */ public double lset(final double value) { if (this.lastSlot == -2) { final double previous = this.allocatedDefaultKeyValue; this.allocatedDefaultKeyValue = value; return previous; } assert this.lastSlot >= 0 : "Call containsKey() first."; assert (this.keys[this.lastSlot] != (0)) : "Last call to exists did not have any associated value."; final double previous = this.values[this.lastSlot]; this.values[this.lastSlot] = value; return previous; } /** * @return Returns the slot of the last key looked up in a call to {@link #containsKey} if * it returned true * or else -2 if {@link #containsKey} were successful on key = 0 * @see #containsKey */ public int lslot() { assert this.lastSlot >= 0 || this.lastSlot == -2 : "Call containsKey() first."; return this.lastSlot; } /** * {@inheritDoc} * *

Saves the associated value for fast access using {@link #lget} * or {@link #lset}.

*
     * if (map.containsKey(key))
     *   value = map.lget();
     * 
* or, to modify the value at the given key without looking up * its slot twice: *
     * if (map.containsKey(key))
     *   map.lset(map.lget() + 1);
     * 
* */ @Override public boolean containsKey(final int key) { if (key == (0)) { if (this.allocatedDefaultKey) { this.lastSlot = -2; } else { this.lastSlot = -1; } return this.allocatedDefaultKey; } final int mask = this.keys.length - 1; final IntHashingStrategy strategy = this.hashStrategy; final int[] keys = this.keys; //copied straight from fastutil "fast-path" int slot; int curr; //1.1 The rehashed slot is free, return false if ((curr = keys[slot = PhiMix.hash(strategy.computeHashCode(key)) & mask]) == (0)) { this.lastSlot = -1; return false; } //1.2) The rehashed entry is occupied by the key, return true if (strategy.equals(curr, key)) { this.lastSlot = slot; return true; } //2. Hash collision, search for the key along the path slot = (slot + 1) & mask; int dist = 0; final int[] cached = this.hash_cache; while ((keys[slot] != (0)) && dist <= (slot < cached[slot] ? slot + cached.length - cached[slot] : slot - cached[slot]) ) { if (strategy.equals(key, keys[slot])) { this.lastSlot = slot; return true; } slot = (slot + 1) & mask; dist++; } //end while true //unsuccessful search this.lastSlot = -1; return false; } /** * {@inheritDoc} * *

Does not release internal buffers.

*/ @Override public void clear() { this.assigned = 0; this.lastSlot = -1; // States are always cleared. this.allocatedDefaultKey = false; //Faster than Arrays.fill(keys, null); // Help the GC. IntArrays.blankArray(this.keys, 0, this.keys.length); } /** * {@inheritDoc} */ @Override public int size() { return this.assigned + (this.allocatedDefaultKey ? 1 : 0); } /** * {@inheritDoc} */ @Override public int capacity() { return this.resizeAt - 1; } /** * {@inheritDoc} * *

Note that an empty container may still contain many deleted keys (that occupy buffer * space). Adding even a single element to such a container may cause rehashing.

*/ @Override public boolean isEmpty() { return size() == 0; } /** * {@inheritDoc} */ @Override public int hashCode() { final IntHashingStrategy strategy = this.hashStrategy; int h = 0; if (this.allocatedDefaultKey) { h += 0 + Internals.rehash(this.allocatedDefaultKeyValue); } final int[] keys = this.keys; final double[] values = this.values; for (int i = keys.length; --i >= 0;) { if ((keys[i] != (0))) { h += PhiMix.hash(strategy.computeHashCode(keys[i])) + Internals.rehash(values[i]); } } return h; } /** * {@inheritDoc} */ @Override public boolean equals(final Object obj) { if (obj != null) { if (obj == this) { return true; } if (!(obj instanceof IntDoubleOpenCustomHashMap)) { return false; } if (!this.hashStrategy.equals(((IntDoubleOpenCustomHashMap) obj).hashStrategy)) { return false; } @SuppressWarnings("unchecked") final IntDoubleOpenCustomHashMap other = (IntDoubleOpenCustomHashMap) obj; if (other.size() == this.size()) { final EntryIterator it = this.iterator(); while (it.hasNext()) { final IntDoubleCursor c = it.next(); if (other.containsKey(c.key)) { final double v = other.get(c.key); if ((Double.doubleToLongBits(c.value) == Double.doubleToLongBits(v))) { continue; } } //recycle it.release(); return false; } return true; } } return false; } /** * An iterator implementation for {@link #iterator}. */ public final class EntryIterator extends AbstractIterator { public final IntDoubleCursor cursor; public EntryIterator() { this.cursor = new IntDoubleCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected IntDoubleCursor fetch() { if (this.cursor.index == IntDoubleOpenCustomHashMap.this.keys.length + 1) { if (IntDoubleOpenCustomHashMap.this.allocatedDefaultKey) { this.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length; this.cursor.key = (0); this.cursor.value = IntDoubleOpenCustomHashMap.this.allocatedDefaultKeyValue; return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(IntDoubleOpenCustomHashMap.this.keys[i] != (0))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.key = IntDoubleOpenCustomHashMap.this.keys[i]; this.cursor.value = IntDoubleOpenCustomHashMap.this.values[i]; return this.cursor; } } /** * internal pool of EntryIterator */ protected final IteratorPool entryIteratorPool = new IteratorPool( new ObjectFactory() { @Override public EntryIterator create() { return new EntryIterator(); } @Override public void initialize(final EntryIterator obj) { obj.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length + 1; } @Override public void reset(final EntryIterator obj) { // nothing } }); /** * {@inheritDoc} * @return */ @Override public EntryIterator iterator() { //return new EntryIterator(); return this.entryIteratorPool.borrow(); } /** * {@inheritDoc} */ @Override public T forEach(final T procedure) { if (this.allocatedDefaultKey) { procedure.apply((0), this.allocatedDefaultKeyValue); } final int[] keys = this.keys; final double[] values = this.values; //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { if ((keys[i] != (0))) { procedure.apply(keys[i], values[i]); } } return procedure; } /** * {@inheritDoc} */ @Override public T forEach(final T predicate) { if (this.allocatedDefaultKey) { if (!predicate.apply((0), this.allocatedDefaultKeyValue)) { return predicate; } } final int[] keys = this.keys; final double[] values = this.values; //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { if ((keys[i] != (0))) { if (!predicate.apply(keys[i], values[i])) { break; } } } //end for return predicate; } /** * @return a new KeysContainer view of the keys of this associated container. * This view then reflects all changes from the map. */ @Override public KeysContainer keys() { return new KeysContainer(); } /** * A view of the keys inside this hash map. */ public final class KeysContainer extends AbstractIntCollection implements IntLookupContainer { private final IntDoubleOpenCustomHashMap owner = IntDoubleOpenCustomHashMap.this; @Override public boolean contains(final int e) { return containsKey(e); } @Override public T forEach(final T procedure) { if (this.owner.allocatedDefaultKey) { procedure.apply((0)); } final int[] keys = this.owner.keys; //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { if ((keys[i] != (0))) { procedure.apply(keys[i]); } } return procedure; } @Override public T forEach(final T predicate) { if (this.owner.allocatedDefaultKey) { if (!predicate.apply((0))) { return predicate; } } final int[] keys = this.owner.keys; //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { if ((keys[i] != (0))) { if (!predicate.apply(keys[i])) { break; } } } return predicate; } /** * {@inheritDoc} */ @Override public KeysIterator iterator() { //return new KeysIterator(); return this.keyIteratorPool.borrow(); } /** * {@inheritDoc} */ @Override public int size() { return this.owner.size(); } /** * {@inheritDoc} */ @Override public int capacity() { return this.owner.capacity(); } @Override public void clear() { this.owner.clear(); } @Override public int removeAll(final IntPredicate predicate) { return this.owner.removeAll(predicate); } @Override public int removeAllOccurrences(final int e) { final boolean hasKey = this.owner.containsKey(e); int result = 0; if (hasKey) { this.owner.remove(e); result = 1; } return result; } /** * internal pool of KeysIterator */ protected final IteratorPool keyIteratorPool = new IteratorPool( new ObjectFactory() { @Override public KeysIterator create() { return new KeysIterator(); } @Override public void initialize(final KeysIterator obj) { obj.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length + 1; } @Override public void reset(final KeysIterator obj) { // nothing } }); @Override public int[] toArray(final int[] target) { int count = 0; if (this.owner.allocatedDefaultKey) { target[count++] = (0); } final int[] keys = this.owner.keys; for (int i = 0; i < keys.length; i++) { if ((keys[i] != (0))) { target[count++] = keys[i]; } } assert count == this.owner.size(); return target; } }; /** * An iterator over the set of keys. */ public final class KeysIterator extends AbstractIterator { public final IntCursor cursor; public KeysIterator() { this.cursor = new IntCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected IntCursor fetch() { if (this.cursor.index == IntDoubleOpenCustomHashMap.this.keys.length + 1) { if (IntDoubleOpenCustomHashMap.this.allocatedDefaultKey) { this.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length; this.cursor.value = (0); return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(IntDoubleOpenCustomHashMap.this.keys[i] != (0))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.value = IntDoubleOpenCustomHashMap.this.keys[i]; return this.cursor; } } /** * @return a new ValuesContainer, view of the values of this map. * This view then reflects all changes from the map. */ @Override public ValuesContainer values() { return new ValuesContainer(); } /** * A view over the set of values of this map. */ public final class ValuesContainer extends AbstractDoubleCollection { private final IntDoubleOpenCustomHashMap owner = IntDoubleOpenCustomHashMap.this; /** * {@inheritDoc} */ @Override public int size() { return this.owner.size(); } /** * {@inheritDoc} */ @Override public int capacity() { return this.owner.capacity(); } @Override public boolean contains(final double value) { if (this.owner.allocatedDefaultKey && (Double.doubleToLongBits(value) == Double.doubleToLongBits(this.owner.allocatedDefaultKeyValue))) { return true; } // This is a linear scan over the values, but it's in the contract, so be it. final int[] keys = this.owner.keys; final double[] values = this.owner.values; for (int slot = 0; slot < keys.length; slot++) { if ((keys[slot] != (0)) && (Double.doubleToLongBits(value) == Double.doubleToLongBits(values[slot]))) { return true; } } return false; } @Override public T forEach(final T procedure) { if (this.owner.allocatedDefaultKey) { procedure.apply(this.owner.allocatedDefaultKeyValue); } final int[] keys = this.owner.keys; final double[] values = this.owner.values; for (int slot = 0; slot < keys.length; slot++) { if ((keys[slot] != (0))) { procedure.apply(values[slot]); } } return procedure; } @Override public T forEach(final T predicate) { if (this.owner.allocatedDefaultKey) { if (!predicate.apply(this.owner.allocatedDefaultKeyValue)) { return predicate; } } final int[] keys = this.owner.keys; final double[] values = this.owner.values; for (int slot = 0; slot < keys.length; slot++) { if ((keys[slot] != (0))) { if (!predicate.apply(values[slot])) { break; } } } return predicate; } @Override public ValuesIterator iterator() { // return new ValuesIterator(); return this.valuesIteratorPool.borrow(); } /** * {@inheritDoc} * Indeed removes all the (key,value) pairs matching * (key ? , e) with the same e, from the map. */ @Override public int removeAllOccurrences(final double e) { final int before = this.owner.size(); if (this.owner.allocatedDefaultKey) { if ((Double.doubleToLongBits(e) == Double.doubleToLongBits(this.owner.allocatedDefaultKeyValue))) { this.owner.allocatedDefaultKey = false; } } final int[] keys = this.owner.keys; final double[] values = this.owner.values; for (int slot = 0; slot < keys.length;) { if ((keys[slot] != (0))) { if ((Double.doubleToLongBits(e) == Double.doubleToLongBits(values[slot]))) { this.owner.assigned--; shiftConflictingKeys(slot); // Repeat the check for the same i. continue; } } slot++; } return before - this.owner.size(); } /** * {@inheritDoc} * Indeed removes all the (key,value) pairs matching * the predicate for the values, from the map. */ @Override public int removeAll(final DoublePredicate predicate) { final int before = this.owner.size(); if (this.owner.allocatedDefaultKey) { if (predicate.apply(this.owner.allocatedDefaultKeyValue)) { this.owner.allocatedDefaultKey = false; } } final int[] keys = this.owner.keys; final double[] values = this.owner.values; for (int slot = 0; slot < keys.length;) { if ((keys[slot] != (0))) { if (predicate.apply(values[slot])) { this.owner.assigned--; shiftConflictingKeys(slot); // Repeat the check for the same i. continue; } } slot++; } return before - this.owner.size(); } /** * {@inheritDoc} * Alias for clear() the whole map. */ @Override public void clear() { this.owner.clear(); } /** * internal pool of ValuesIterator */ protected final IteratorPool valuesIteratorPool = new IteratorPool( new ObjectFactory() { @Override public ValuesIterator create() { return new ValuesIterator(); } @Override public void initialize(final ValuesIterator obj) { obj.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length + 1; } @Override public void reset(final ValuesIterator obj) { // nothing } }); @Override public double[] toArray(final double[] target) { int count = 0; if (this.owner.allocatedDefaultKey) { target[count++] = this.owner.allocatedDefaultKeyValue; } final int[] keys = this.owner.keys; final double[] values = this.owner.values; for (int i = 0; i < values.length; i++) { if ((keys[i] != (0))) { target[count++] = values[i]; } } assert count == this.owner.size(); return target; } } /** * An iterator over the set of values. */ public final class ValuesIterator extends AbstractIterator { public final DoubleCursor cursor; public ValuesIterator() { this.cursor = new DoubleCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected DoubleCursor fetch() { if (this.cursor.index == IntDoubleOpenCustomHashMap.this.values.length + 1) { if (IntDoubleOpenCustomHashMap.this.allocatedDefaultKey) { this.cursor.index = IntDoubleOpenCustomHashMap.this.values.length; this.cursor.value = IntDoubleOpenCustomHashMap.this.allocatedDefaultKeyValue; return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = IntDoubleOpenCustomHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(IntDoubleOpenCustomHashMap.this.keys[i] != (0))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.value = IntDoubleOpenCustomHashMap.this.values[i]; return this.cursor; } } /** * Clone this object. * */ @Override public IntDoubleOpenCustomHashMap clone() { /* */ IntDoubleOpenCustomHashMap cloned = new IntDoubleOpenCustomHashMap(this.size(), this.loadFactor, this.hashStrategy); cloned.putAll(this); cloned.allocatedDefaultKeyValue = this.allocatedDefaultKeyValue; cloned.allocatedDefaultKey = this.allocatedDefaultKey; cloned.defaultValue = this.defaultValue; return cloned; } /** * Convert the contents of this map to a human-friendly string. */ @Override public String toString() { final StringBuilder buffer = new StringBuilder(); buffer.append("["); boolean first = true; for (final IntDoubleCursor cursor : this) { if (!first) { buffer.append(", "); } buffer.append(cursor.key); buffer.append("=>"); buffer.append(cursor.value); first = false; } buffer.append("]"); return buffer.toString(); } /** * Creates a hash map from two index-aligned arrays of key-value pairs. */ public static IntDoubleOpenCustomHashMap from(final int[] keys, final double[] values, final IntHashingStrategy hashStrategy) { if (keys.length != values.length) { throw new IllegalArgumentException("Arrays of keys and values must have an identical length."); } final IntDoubleOpenCustomHashMap map = new IntDoubleOpenCustomHashMap(keys.length, hashStrategy); for (int i = 0; i < keys.length; i++) { map.put(keys[i], values[i]); } return map; } /** * Create a hash map from another associative container. */ public static IntDoubleOpenCustomHashMap from(final IntDoubleAssociativeContainer container, final IntHashingStrategy hashStrategy) { return new IntDoubleOpenCustomHashMap(container, hashStrategy); } /** * Create a new hash map without providing the full generic signature (constructor * shortcut). */ public static IntDoubleOpenCustomHashMap newInstance(final IntHashingStrategy hashStrategy) { return new IntDoubleOpenCustomHashMap(hashStrategy); } /** * Create a new hash map with initial capacity and load factor control. (constructor * shortcut). */ public static IntDoubleOpenCustomHashMap newInstance(final int initialCapacity, final float loadFactor, final IntHashingStrategy hashStrategy) { return new IntDoubleOpenCustomHashMap(initialCapacity, loadFactor, hashStrategy); } /** * Return the current {@link IntHashingStrategy} in use. */ public IntHashingStrategy strategy() { return this.hashStrategy; } /** * Returns the "default value" value used * in containers methods returning "default value" * @return */ public double getDefaultValue() { return this.defaultValue; } /** * Set the "default value" value to be used * in containers methods returning "default value" * @return */ public void setDefaultValue(final double defaultValue) { this.defaultValue = defaultValue; } //Test for existence in template }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy