All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.carrotsearch.hppcrt.maps.CharByteHashMap Maven / Gradle / Ivy

Go to download

High Performance Primitive Collections Realtime (fork of HPPC from Carrotsearch) Fundamental data structures (maps, sets, lists, queues, heaps, sorts) generated for combinations of object and primitive types to conserve JVM memory and speed up execution. The Realtime fork intends to extend the existing collections, by tweaking to remove any dynamic allocations at runtime, and to obtain low variance execution times whatever the input nature.

The newest version!
package com.carrotsearch.hppcrt.maps;

import com.carrotsearch.hppcrt.*;
import com.carrotsearch.hppcrt.cursors.*;
import com.carrotsearch.hppcrt.predicates.*;
import com.carrotsearch.hppcrt.procedures.*;
import com.carrotsearch.hppcrt.hash.*;

  
  
  
// If RH is defined, RobinHood Hashing is in effect :
  

/**
 * A hash map of char to byte, implemented using open
 * addressing with linear probing for collision resolution.
 *
 * 

* The internal buffers of this implementation ({@link #keys}, {@link #values}), * are always allocated to the nearest size that is a power of two. When * the capacity exceeds the given load factor, the buffer size is doubled. *

* * * * * * */ @javax.annotation.Generated( date = "2017-07-11T19:16:29+0200", value = "KTypeVTypeHashMap.java") public class CharByteHashMap implements CharByteMap, Cloneable { protected byte defaultValue = ((byte)0); /** * Hash-indexed array holding all keys. *

* Direct map iteration: iterate {keys[i], values[i]} for i in [0; keys.length[ where keys[i] != 0/null, then also * {0/null, {@link #allocatedDefaultKeyValue} } is in the map if {@link #allocatedDefaultKey} = true. *

*/ public char [] keys; /** * Hash-indexed array holding all values associated to the keys. * stored in {@link #keys}. */ public byte [] values; /** * True if key = 0/null is in the map. */ public boolean allocatedDefaultKey = false; /** * if allocatedDefaultKey = true, contains the associated V to the key = 0/null */ public byte allocatedDefaultKeyValue; /** * Cached number of assigned slots in {@link #keys}. */ protected int assigned; /** * The load factor for this map (fraction of allocated slots * before the buffers must be rehashed or reallocated). */ protected final double loadFactor; /** * Resize buffers when {@link #keys} hits this value. */ private int resizeAt; /** * Per-instance size perturbation * introduced in rehashing to create a unique key distribution. */ private final int perturbation = Containers.randomSeed32(); /** * Default constructor: Creates a hash map with the default capacity of {@link Containers#DEFAULT_EXPECTED_ELEMENTS}, * load factor of {@link HashContainers#DEFAULT_LOAD_FACTOR}. * *

See class notes about hash distribution importance.

*/ public CharByteHashMap() { this(Containers.DEFAULT_EXPECTED_ELEMENTS); } /** * Creates a hash map with the given initial capacity, default load factor of * {@link HashContainers#DEFAULT_LOAD_FACTOR}. * *

See class notes about hash distribution importance.

* * @param initialCapacity Initial capacity (greater than zero and automatically * rounded to the next power of two). */ public CharByteHashMap(final int initialCapacity) { this(initialCapacity, HashContainers.DEFAULT_LOAD_FACTOR); } /** * Creates a hash map with the given initial capacity, * load factor. * * @param loadFactor The load factor (greater than zero and smaller than 1). */ public CharByteHashMap(final int initialCapacity, final double loadFactor) { this.loadFactor = loadFactor; //take into account of the load factor to guarantee no reallocations before reaching initialCapacity. allocateBuffers(HashContainers.minBufferSize(initialCapacity, loadFactor)); } /** * Create a hash map from all key-value pairs of another container. */ public CharByteHashMap(final CharByteAssociativeContainer container) { this(container.size()); putAll(container); } /** * {@inheritDoc} */ @Override public byte put(char key, byte value) { if (((key) == '\u0000')) { if (this.allocatedDefaultKey) { final byte previousValue = this.allocatedDefaultKeyValue; this.allocatedDefaultKeyValue = value; return previousValue; } this.allocatedDefaultKeyValue = value; this.allocatedDefaultKey = true; return this.defaultValue; } final int mask = this.keys.length - 1; final char[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; char existing; while (!((existing = keys[slot]) == '\u0000')) { if ( ((((key)) == ((existing))))) { final byte oldValue = ((this.values[slot])); this.values[slot] = value; return oldValue; } slot = (slot + 1) & mask; } //end while // Check if we need to grow. If so, reallocate new data, fill in the last element // and rehash. if (this.assigned == this.resizeAt) { expandAndPut(key, value, slot); } else { this.assigned++; keys[slot] = key; values[slot] = value; } return this.defaultValue; } /** * {@inheritDoc} */ @Override public int putAll(final CharByteAssociativeContainer container) { return putAll((Iterable) container); } /** * {@inheritDoc} */ @Override public int putAll(final Iterable iterable) { final int count = this.size(); for (final CharByteCursor c : iterable) { put(c.key, c.value); } return this.size() - count; } /** * {@inheritDoc} */ @Override public boolean putIfAbsent(final char key, final byte value) { if (!containsKey(key)) { put(key, value); return true; } return false; } /** * If key exists, putValue is inserted into the map, * otherwise any existing value is incremented by additionValue. * * @param key * The key of the value to adjust. * @param putValue * The value to put if key does not exist. * @param incrementValue * The value to add to the existing value if key exists. * @return Returns the current value associated with key (after * changes). */ @SuppressWarnings("cast") @Override public byte putOrAdd(final char key, byte putValue, final byte incrementValue) { if (containsKey(key)) { putValue = get(key); putValue = (byte) (((putValue) + (incrementValue))); } put(key, putValue); return putValue; } /** * Adds incrementValue to any existing value for the given key * or inserts incrementValue if key did not previously exist. * * @param key The key of the value to adjust. * @param incrementValue The value to put or add to the existing value if key exists. * @return Returns the current value associated with key (after changes). */ @Override public byte addTo(final char key, final byte incrementValue) { return putOrAdd(key, incrementValue, incrementValue); } /** * Expand the internal storage buffers (capacity) and rehash. */ private void expandAndPut(final char pendingKey, final byte pendingValue, final int freeSlot) { assert this.assigned == this.resizeAt; //default sentinel value is never in the keys[] array, so never trigger reallocs assert !((pendingKey) == '\u0000'); // Try to allocate new buffers first. If we OOM, it'll be now without // leaving the data structure in an inconsistent state. final char[] oldKeys = ((this.keys)); final byte[] oldValues = ((this.values)); allocateBuffers(HashContainers.nextBufferSize(this.keys.length, this.assigned, this.loadFactor)); // We have succeeded at allocating new data so insert the pending key/value at // the free slot in the old arrays before rehashing. this.assigned++; oldKeys[freeSlot] = pendingKey; oldValues[freeSlot] = pendingValue; //for inserts final int mask = this.keys.length - 1; char key = ('\u0000'); byte value = ((byte)0); int slot = -1; final char[] keys = ((this.keys)); final byte[] values = ((this.values)); //iterate all the old arrays to add in the newly allocated buffers //It is important to iterate backwards to minimize the conflict chain length ! final int perturb = this.perturbation; for (int i = oldKeys.length; --i >= 0;) { //only consider non-empty slots, of course if (!((key = oldKeys[i]) == '\u0000')) { value = oldValues[i]; slot = (BitMixer.mix((key) , (perturb))) & mask; //similar to put(), except all inserted keys are known to be unique. while ((!(((keys)[(slot)]) == '\u0000'))) { slot = (slot + 1) & mask; } //end while keys[slot] = key; values[slot] = value; } } } /** * Allocate internal buffers for a given capacity. * * @param capacity New capacity (must be a power of two). */ @SuppressWarnings("boxing") private void allocateBuffers(final int capacity) { try { final char[] keys = (new char[(capacity)]); final byte[] values = (new byte[(capacity)]); this.keys = keys; this.values = values; //allocate so that there is at least one slot that remains allocated = false //this is compulsory to guarantee proper stop in searching loops this.resizeAt = HashContainers.expandAtCount(capacity, this.loadFactor); } catch (final OutOfMemoryError e) { throw new BufferAllocationException( "Not enough memory to allocate buffers to grow from %d -> %d elements", e, (this.keys == null) ? 0 : this.keys.length, capacity); } } /** * {@inheritDoc} */ @Override public byte remove(final char key) { if (((key) == '\u0000')) { if (this.allocatedDefaultKey) { final byte previousValue = this.allocatedDefaultKeyValue; this.allocatedDefaultKey = false; return previousValue; } return this.defaultValue; } final int mask = this.keys.length - 1; final char[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; char existing; while (!((existing = keys[slot]) == '\u0000') ) { if (((((key)) == ((existing))))) { final byte value = ((this.values[slot])); shiftConflictingKeys(slot); return value; } slot = (slot + 1) & mask; } //end while true return this.defaultValue; } /** * Shift all the slot-conflicting keys allocated to (and including) slot. */ private void shiftConflictingKeys(int gapSlot) { final int mask = this.keys.length - 1; final char[] keys = ((this.keys)); final byte[] values = ((this.values)); final int perturb = this.perturbation; // Perform shifts of conflicting keys to fill in the gap. int distance = 0; while (true) { final int slot = (gapSlot + (++distance)) & mask; final char existing = keys[slot]; final byte existingValue = values[slot]; if (((existing) == '\u0000')) { break; } final int idealSlotModMask = (BitMixer.mix((existing) , (perturb))) & mask; //original HPPC code: shift = (slot - idealSlot) & mask; //equivalent to shift = (slot & mask - idealSlot & mask) & mask; //since slot and idealSlotModMask are already folded, we have : final int shift = (slot - idealSlotModMask) & mask; if (shift >= distance) { // Entry at this position was originally at or before the gap slot. // Move the conflict-shifted entry to the gap's position and repeat the procedure // for any entries to the right of the current position, treating it // as the new gap. keys[gapSlot] = existing; values[gapSlot] = existingValue; gapSlot = slot; distance = 0; } } //end while // Mark the last found gap slot without a conflict as empty. keys[gapSlot] = ('\u0000'); /* */ this.assigned--; } /** * {@inheritDoc} */ @SuppressWarnings("unchecked") @Override public int removeAll(final CharContainer other) { final int before = this.size(); //1) other is a CharLookupContainer, so with fast lookup guarantees //and is bigger than this, so take advantage of both and iterate over this //and test other elements by their contains(). if (other.size() >= before && other instanceof CharLookupContainer) { if (this.allocatedDefaultKey) { if (other.contains(('\u0000'))) { this.allocatedDefaultKey = false; } } final char[] keys = ((this.keys)); for (int i = 0; i < keys.length;) { char existing; if (!((existing = keys[i]) == '\u0000') && other.contains(existing)) { shiftConflictingKeys(i); // Shift, do not increment slot. } else { i++; } } } else { //2) Do not use contains() from container, which may lead to O(n**2) execution times, //so it iterate linearly and call remove() from map which is O(1). for (final CharCursor c : other) { remove(((c.value))); } } return before - this.size(); } /** * {@inheritDoc} */ @Override public int removeAll(final CharPredicate predicate) { final int before = this.size(); if (this.allocatedDefaultKey) { if (predicate.apply(('\u0000'))) { this.allocatedDefaultKey = false; } } final char[] keys = ((this.keys)); for (int i = 0; i < keys.length;) { char existing; if (!((existing = keys[i]) == '\u0000') && predicate.apply(existing)) { shiftConflictingKeys(i); // Shift, do not increment slot. } else { i++; } } return before - this.size(); } /** * {@inheritDoc} */ @Override public int removeAll(final CharBytePredicate predicate) { final int before = this.size(); if (this.allocatedDefaultKey) { if (predicate.apply(('\u0000'), this.allocatedDefaultKeyValue)) { this.allocatedDefaultKey = false; } } final char[] keys = ((this.keys)); final byte[] values = ((this.values)); for (int i = 0; i < keys.length;) { char existing; if (!((existing = keys[i]) == '\u0000') && predicate.apply(existing, values[i])) { shiftConflictingKeys(i); // Shift, do not increment slot. } else { i++; } } return before - this.size(); } /** * {@inheritDoc} */ @Override public byte get(final char key) { if (((key) == '\u0000')) { if (this.allocatedDefaultKey) { return this.allocatedDefaultKeyValue; } return this.defaultValue; } final int mask = this.keys.length - 1; final char[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; char existing; while (!((existing = keys[slot]) == '\u0000') ) { if (((((key)) == ((existing))))) { return ((this.values[slot])); } slot = (slot + 1) & mask; } //end while true return this.defaultValue; } /** * {@inheritDoc} */ @Override public boolean containsKey(final char key) { if (((key) == '\u0000')) { return this.allocatedDefaultKey; } final int mask = this.keys.length - 1; final char[] keys = ((this.keys)); int slot = (BitMixer.mix((key) , this.perturbation)) & mask; char existing; while (!((existing = keys[slot]) == '\u0000') ) { if (((((key)) == ((existing))))) { return true; } slot = (slot + 1) & mask; } //end while true return false; } /** * {@inheritDoc} */ @Override public void clear() { this.assigned = 0; // States are always cleared. this.allocatedDefaultKey = false; //Faster than Arrays.fill(keys, null); // Help the GC. CharArrays.blankArray(this.keys, 0, this.keys.length); } /** * {@inheritDoc} */ @Override public int size() { return this.assigned + (this.allocatedDefaultKey ? 1 : 0); } /** * {@inheritDoc} */ @Override public int capacity() { return this.resizeAt; } /** * {@inheritDoc} * *

Note that an empty container may still contain many deleted keys (that occupy buffer * space). Adding even a single element to such a container may cause rehashing.

*/ @Override public boolean isEmpty() { return size() == 0; } /** * {@inheritDoc} */ @Override public int hashCode() { int h = 0; if (this.allocatedDefaultKey) { h += BitMixer.mix(this.allocatedDefaultKeyValue); } final char[] keys = ((this.keys)); final byte[] values = ((this.values)); for (int i = keys.length; --i >= 0;) { char existing; if (!((existing = keys[i]) == '\u0000')) { h += BitMixer.mix(existing) ^ BitMixer.mix(values[i]); } } return h; } /** * {@inheritDoc} */ @Override public boolean equals(final Object obj) { if (obj != null) { if (obj == this) { return true; } //must be of the same class, subclasses are not comparable if (obj.getClass() != this.getClass()) { return false; } /* */ CharByteHashMap other = (CharByteHashMap) obj; //must be of the same size if (other.size() != this.size()) { return false; } final EntryIterator it = this.iterator(); while (it.hasNext()) { final CharByteCursor c = it.next(); if (!other.containsKey(c.key)) { //recycle it.release(); return false; } final byte otherValue = other.get(c.key); if (!((c.value) == (otherValue))) { //recycle it.release(); return false; } } //end while return true; } return false; } /** * An iterator implementation for {@link #iterator}. * Holds a CharByteCursor returning * (key, value, index) = (char key, byte value, index the position in keys {@link CharByteHashMap#keys}, or keys.length for key = 0/null) */ public final class EntryIterator extends AbstractIterator { public final CharByteCursor cursor; public EntryIterator() { this.cursor = new CharByteCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected CharByteCursor fetch() { if (this.cursor.index == CharByteHashMap.this.keys.length + 1) { if (CharByteHashMap.this.allocatedDefaultKey) { this.cursor.index = CharByteHashMap.this.keys.length; this.cursor.key = ('\u0000'); this.cursor.value = CharByteHashMap.this.allocatedDefaultKeyValue; return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = CharByteHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(!(((((CharByteHashMap.this.keys)))[(i)]) == '\u0000'))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.key = ((CharByteHashMap.this.keys[i])); this.cursor.value = ((CharByteHashMap.this.values[i])); return this.cursor; } } /** * internal pool of EntryIterator */ protected final IteratorPool entryIteratorPool = new IteratorPool( new ObjectFactory() { @Override public EntryIterator create() { return new EntryIterator(); } @Override public void initialize(final EntryIterator obj) { obj.cursor.index = CharByteHashMap.this.keys.length + 1; } @Override public void reset(final EntryIterator obj) { } }); /** * {@inheritDoc} */ @Override public EntryIterator iterator() { //return new EntryIterator(); return this.entryIteratorPool.borrow(); } /** * {@inheritDoc} */ @Override public T forEach(final T procedure) { if (this.allocatedDefaultKey) { procedure.apply(('\u0000'), this.allocatedDefaultKeyValue); } final char[] keys = ((this.keys)); final byte[] values = ((this.values)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { char existing; if (!((existing = keys[i]) == '\u0000')) { procedure.apply(existing, values[i]); } } return procedure; } /** * {@inheritDoc} */ @Override public T forEach(final T predicate) { if (this.allocatedDefaultKey) { if (!predicate.apply(('\u0000'), this.allocatedDefaultKeyValue)) { return predicate; } } final char[] keys = ((this.keys)); final byte[] values = ((this.values)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { char existing; if (!((existing = keys[i]) == '\u0000')) { if (!predicate.apply(existing, values[i])) { break; } } } //end for return predicate; } /** * {@inheritDoc} * @return a new KeysCollection view of the keys of this map. */ @Override public KeysCollection keys() { return new KeysCollection(); } /** * A view of the keys inside this map. */ public final class KeysCollection extends AbstractCharCollection implements CharLookupContainer { private final CharByteHashMap owner = CharByteHashMap.this; @Override public boolean contains(final char e) { return containsKey(e); } @Override public T forEach(final T procedure) { if (this.owner.allocatedDefaultKey) { procedure.apply(('\u0000')); } final char[] keys = ((this.owner.keys)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { char existing; if (!((existing = keys[i]) == '\u0000')) { procedure.apply(existing); } } return procedure; } @Override public T forEach(final T predicate) { if (this.owner.allocatedDefaultKey) { if (!predicate.apply(('\u0000'))) { return predicate; } } final char[] keys = ((this.owner.keys)); //Iterate in reverse for side-stepping the longest conflict chain //in another hash, in case apply() is actually used to fill another hash container. for (int i = keys.length - 1; i >= 0; i--) { char existing; if (!((existing = keys[i]) == '\u0000')) { if (!predicate.apply(existing)) { break; } } } return predicate; } /** * {@inheritDoc} */ @Override public KeysIterator iterator() { //return new KeysIterator(); return this.keyIteratorPool.borrow(); } /** * {@inheritDoc} */ @Override public int size() { return this.owner.size(); } /** * {@inheritDoc} */ @Override public int capacity() { return this.owner.capacity(); } @Override public void clear() { this.owner.clear(); } @Override public int removeAll(final CharPredicate predicate) { return this.owner.removeAll(predicate); } @Override public int removeAll(final char e) { final boolean hasKey = this.owner.containsKey(e); int result = 0; if (hasKey) { this.owner.remove(e); result = 1; } return result; } /** * internal pool of KeysIterator */ protected final IteratorPool keyIteratorPool = new IteratorPool( new ObjectFactory() { @Override public KeysIterator create() { return new KeysIterator(); } @Override public void initialize(final KeysIterator obj) { obj.cursor.index = CharByteHashMap.this.keys.length + 1; } @Override public void reset(final KeysIterator obj) { } }); @Override public char[] toArray(final char[] target) { int count = 0; if (this.owner.allocatedDefaultKey) { target[count++] = ('\u0000'); } final char[] keys = ((this.owner.keys)); for (int i = 0; i < keys.length; i++) { char existing; if (!((existing = keys[i]) == '\u0000')) { target[count++] = existing; } } assert count == this.owner.size(); return target; } }; /** * An iterator over the set of keys. * Holds a CharCursor returning (value, index) = (char key, index the position in buffer {@link CharByteHashMap#keys}, or keys.length for key = 0/null.) */ public final class KeysIterator extends AbstractIterator { public final CharCursor cursor; public KeysIterator() { this.cursor = new CharCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected CharCursor fetch() { if (this.cursor.index == CharByteHashMap.this.keys.length + 1) { if (CharByteHashMap.this.allocatedDefaultKey) { this.cursor.index = CharByteHashMap.this.keys.length; this.cursor.value = ('\u0000'); return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = CharByteHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(!(((((CharByteHashMap.this.keys)))[(i)]) == '\u0000'))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.value = ((CharByteHashMap.this.keys[i])); return this.cursor; } } /** * {@inheritDoc} * @return a new ValuesCollection view of the values of this map. */ @Override public ValuesCollection values() { return new ValuesCollection(); } /** * A view over the set of values of this map. */ public final class ValuesCollection extends AbstractByteCollection { private final CharByteHashMap owner = CharByteHashMap.this; /** * {@inheritDoc} */ @Override public int size() { return this.owner.size(); } /** * {@inheritDoc} */ @Override public int capacity() { return this.owner.capacity(); } @Override public boolean contains(final byte value) { if (this.owner.allocatedDefaultKey && ((value) == (this.owner.allocatedDefaultKeyValue))) { return true; } // This is a linear scan over the values, but it's in the contract, so be it. final char[] keys = ((this.owner.keys)); final byte[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length; slot++) { if ((!(((keys)[(slot)]) == '\u0000')) && ((value) == (values[slot]))) { return true; } } return false; } @Override public T forEach(final T procedure) { if (this.owner.allocatedDefaultKey) { procedure.apply(this.owner.allocatedDefaultKeyValue); } final char[] keys = ((this.owner.keys)); final byte[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length; slot++) { if ((!(((keys)[(slot)]) == '\u0000'))) { procedure.apply(values[slot]); } } return procedure; } @Override public T forEach(final T predicate) { if (this.owner.allocatedDefaultKey) { if (!predicate.apply(this.owner.allocatedDefaultKeyValue)) { return predicate; } } final char[] keys = ((this.owner.keys)); final byte[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length; slot++) { if ((!(((keys)[(slot)]) == '\u0000'))) { if (!predicate.apply(values[slot])) { break; } } } return predicate; } @Override public ValuesIterator iterator() { // return new ValuesIterator(); return this.valuesIteratorPool.borrow(); } /** * {@inheritDoc} * Indeed removes all the (key,value) pairs matching * (key ? , e) with the same e, from the map. */ @Override public int removeAll(final byte e) { final int before = this.owner.size(); if (this.owner.allocatedDefaultKey) { if (((e) == (this.owner.allocatedDefaultKeyValue))) { this.owner.allocatedDefaultKey = false; } } final char[] keys = ((this.owner.keys)); final byte[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length;) { if ((!(((keys)[(slot)]) == '\u0000')) && ((e) == (values[slot]))) { shiftConflictingKeys(slot); // Shift, do not increment slot. } else { slot++; } } return before - this.owner.size(); } /** * {@inheritDoc} * Indeed removes all the (key,value) pairs matching * the predicate for the values, from the map. */ @Override public int removeAll(final BytePredicate predicate) { final int before = this.owner.size(); if (this.owner.allocatedDefaultKey) { if (predicate.apply(this.owner.allocatedDefaultKeyValue)) { this.owner.allocatedDefaultKey = false; } } final char[] keys = ((this.owner.keys)); final byte[] values = ((this.owner.values)); for (int slot = 0; slot < keys.length;) { if ((!(((keys)[(slot)]) == '\u0000')) && predicate.apply(values[slot])) { shiftConflictingKeys(slot); // Shift, do not increment slot. } else { slot++; } } return before - this.owner.size(); } /** * {@inheritDoc} * Alias for clear() the whole map. */ @Override public void clear() { this.owner.clear(); } /** * internal pool of ValuesIterator */ protected final IteratorPool valuesIteratorPool = new IteratorPool( new ObjectFactory() { @Override public ValuesIterator create() { return new ValuesIterator(); } @Override public void initialize(final ValuesIterator obj) { obj.cursor.index = CharByteHashMap.this.keys.length + 1; } @Override public void reset(final ValuesIterator obj) { } }); @Override public byte[] toArray(final byte[] target) { int count = 0; if (this.owner.allocatedDefaultKey) { target[count++] = this.owner.allocatedDefaultKeyValue; } final char[] keys = ((this.owner.keys)); final byte[] values = ((this.owner.values)); for (int i = 0; i < values.length; i++) { if ((!(((keys)[(i)]) == '\u0000'))) { target[count++] = values[i]; } } assert count == this.owner.size(); return target; } } /** * An iterator over the set of values. * Holds a CharCursor returning (value, index) = (byte value, index the position in buffer {@link CharByteHashMap#values}, * or values.length for value = {@link CharByteHashMap#allocatedDefaultKeyValue}). */ public final class ValuesIterator extends AbstractIterator { public final ByteCursor cursor; public ValuesIterator() { this.cursor = new ByteCursor(); this.cursor.index = -2; } /** * Iterate backwards w.r.t the buffer, to * minimize collision chains when filling another hash container (ex. with putAll()) */ @Override protected ByteCursor fetch() { if (this.cursor.index == CharByteHashMap.this.values.length + 1) { if (CharByteHashMap.this.allocatedDefaultKey) { this.cursor.index = CharByteHashMap.this.values.length; this.cursor.value = CharByteHashMap.this.allocatedDefaultKeyValue; return this.cursor; } //no value associated with the default key, continue iteration... this.cursor.index = CharByteHashMap.this.keys.length; } int i = this.cursor.index - 1; while (i >= 0 && !(!(((((CharByteHashMap.this.keys)))[(i)]) == '\u0000'))) { i--; } if (i == -1) { return done(); } this.cursor.index = i; this.cursor.value = ((CharByteHashMap.this.values[i])); return this.cursor; } } /** * {@inheritDoc} */ @Override public CharByteHashMap clone() { //clone to size() to prevent some cases of exponential sizes, final CharByteHashMap cloned = new CharByteHashMap(this.size(), this.loadFactor); //We must NOT clone because of independent perturbations seeds cloned.putAll(this); return cloned; } /** * Convert the contents of this map to a human-friendly string. */ @Override public String toString() { final StringBuilder buffer = new StringBuilder(); buffer.append("["); boolean first = true; for (final CharByteCursor cursor : this) { if (!first) { buffer.append(", "); } buffer.append(cursor.key); buffer.append("=>"); buffer.append(cursor.value); first = false; } buffer.append("]"); return buffer.toString(); } /** * Creates a hash map from two index-aligned arrays of key-value pairs. Default load factor is used. */ public static CharByteHashMap from(final char[] keys, final byte[] values) { if (keys.length != values.length) { throw new IllegalArgumentException("Arrays of keys and values must have an identical length."); } final CharByteHashMap map = new CharByteHashMap(keys.length); for (int i = 0; i < keys.length; i++) { map.put(keys[i], values[i]); } return map; } /** * Create a hash map from another associative container. (constructor shortcut) Default load factor is used. */ public static CharByteHashMap from( final CharByteAssociativeContainer container) { return new CharByteHashMap(container); } /** * Create a new hash map without providing the full generic signature * (constructor shortcut). */ public static CharByteHashMap newInstance() { return new CharByteHashMap(); } /** * Create a new hash map with initial capacity and load factor control. * (constructor shortcut). */ public static CharByteHashMap newInstance(final int initialCapacity, final double loadFactor) { return new CharByteHashMap(initialCapacity, loadFactor); } /** * Returns the "default value" value used in containers methods returning * "default value" */ @Override public byte getDefaultValue() { return this.defaultValue; } /** * Set the "default value" value to be used in containers methods returning * "default value" */ @Override public void setDefaultValue(final byte defaultValue) { this.defaultValue = defaultValue; } //Test for existence in template }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy