All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.github.netty.core.util.ConcurrentReferenceHashMap Maven / Gradle / Ivy

The newest version!
package com.github.netty.core.util;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.lang.ref.WeakReference;
import java.lang.reflect.Array;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.locks.ReentrantLock;

/**
 * @author wangzihao
 */
public class ConcurrentReferenceHashMap extends AbstractMap implements ConcurrentMap {

    private static final int DEFAULT_INITIAL_CAPACITY = 16;

    private static final float DEFAULT_LOAD_FACTOR = 0.75f;

    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    private static final ReferenceType DEFAULT_REFERENCE_TYPE = ReferenceType.SOFT;

    private static final int MAXIMUM_CONCURRENCY_LEVEL = 1 << 16;

    private static final int MAXIMUM_SEGMENT_SIZE = 1 << 30;


    /**
     * Array of segments indexed using the high order bits from the hash.
     */
    private final Segment[] segments;

    /**
     * When the average number of references per table exceeds this value resize will be attempted.
     */
    private final float loadFactor;

    /**
     * The reference type: SOFT or WEAK.
     */
    private final ReferenceType referenceType;

    /**
     * The shift value used to calculate the size of the segments array and an index from the hash.
     */
    private final int shift;

    /**
     * Late binding entry set.
     */

    private volatile Set> entrySet;


    /**
     * Create a new {@code ConcurrentReferenceHashMap} instance.
     */
    public ConcurrentReferenceHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, DEFAULT_REFERENCE_TYPE);
    }

    /**
     * Create a new {@code ConcurrentReferenceHashMap} instance.
     *
     * @param initialCapacity the initial capacity of the map
     */
    public ConcurrentReferenceHashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, DEFAULT_REFERENCE_TYPE);
    }

    /**
     * Create a new {@code ConcurrentReferenceHashMap} instance.
     *
     * @param initialCapacity the initial capacity of the map
     * @param loadFactor      the load factor. When the average number of references per table
     *                        exceeds this value resize will be attempted
     */
    public ConcurrentReferenceHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL, DEFAULT_REFERENCE_TYPE);
    }

    /**
     * Create a new {@code ConcurrentReferenceHashMap} instance.
     *
     * @param initialCapacity  the initial capacity of the map
     * @param concurrencyLevel the expected number of threads that will concurrently
     *                         write to the map
     */
    public ConcurrentReferenceHashMap(int initialCapacity, int concurrencyLevel) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, concurrencyLevel, DEFAULT_REFERENCE_TYPE);
    }

    /**
     * Create a new {@code ConcurrentReferenceHashMap} instance.
     *
     * @param initialCapacity the initial capacity of the map
     * @param referenceType   the reference type used for entries (soft or weak)
     */
    public ConcurrentReferenceHashMap(int initialCapacity, ReferenceType referenceType) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL, referenceType);
    }

    /**
     * Create a new {@code ConcurrentReferenceHashMap} instance.
     *
     * @param initialCapacity  the initial capacity of the map
     * @param loadFactor       the load factor. When the average number of references per
     *                         table exceeds this value, resize will be attempted.
     * @param concurrencyLevel the expected number of threads that will concurrently
     *                         write to the map
     */
    public ConcurrentReferenceHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
        this(initialCapacity, loadFactor, concurrencyLevel, DEFAULT_REFERENCE_TYPE);
    }

    /**
     * Create a new {@code ConcurrentReferenceHashMap} instance.
     *
     * @param initialCapacity  the initial capacity of the map
     * @param loadFactor       the load factor. When the average number of references per
     *                         table exceeds this value, resize will be attempted.
     * @param concurrencyLevel the expected number of threads that will concurrently
     *                         write to the map
     * @param referenceType    the reference type used for entries (soft or weak)
     */
    @SuppressWarnings("unchecked")
    public ConcurrentReferenceHashMap(
            int initialCapacity, float loadFactor, int concurrencyLevel, ReferenceType referenceType) {

        if (initialCapacity < 0) {
            initialCapacity = DEFAULT_INITIAL_CAPACITY;
        }
        if (loadFactor <= 0F) {
            loadFactor = DEFAULT_LOAD_FACTOR;
        }
        if (concurrencyLevel <= 0F) {
            concurrencyLevel = DEFAULT_CONCURRENCY_LEVEL;
        }

        Objects.requireNonNull(referenceType, "Reference type must not be null");
        this.loadFactor = loadFactor;
        this.shift = calculateShift(concurrencyLevel, MAXIMUM_CONCURRENCY_LEVEL);
        int size = 1 << this.shift;
        this.referenceType = referenceType;
        int roundedUpSegmentCapacity = (int) ((initialCapacity + size - 1L) / size);
        this.segments = (Segment[]) Array.newInstance(Segment.class, size);
        for (int i = 0; i < this.segments.length; i++) {
            this.segments[i] = new Segment(roundedUpSegmentCapacity);
        }
    }

    /**
     * Calculate a shift value that can be used to create a power-of-two value between
     * the specified maximum and minimum values.
     *
     * @param minimumValue the minimum value
     * @param maximumValue the maximum value
     * @return the calculated shift (use {@code 1 << shift} to obtain a value)
     */
    protected static int calculateShift(int minimumValue, int maximumValue) {
        int shift = 0;
        int value = 1;
        while (value < minimumValue && value < maximumValue) {
            value <<= 1;
            shift++;
        }
        return shift;
    }

    public static int nullSafeHashCode(Object obj) {
        if (obj == null) {
            return 0;
        }
        if (obj.getClass().isArray()) {
            if (obj instanceof Object[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof boolean[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof byte[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof char[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof double[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof float[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof int[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof long[]) {
                return nullSafeHashCode(obj);
            }
            if (obj instanceof short[]) {
                return nullSafeHashCode(obj);
            }
        }
        return obj.hashCode();
    }

    public static boolean nullSafeEquals(Object o1, Object o2) {
        if (o1 == o2) {
            return true;
        }
        if (o1 == null || o2 == null) {
            return false;
        }
        if (o1.equals(o2)) {
            return true;
        }
        if (o1.getClass().isArray() && o2.getClass().isArray()) {
            return arrayEquals(o1, o2);
        }
        return false;
    }

    /**
     * Compare the given arrays with {@code Arrays.equals}, performing an equality
     * check based on the array elements rather than the array reference.
     *
     * @param o1 first array to compare
     * @param o2 second array to compare
     * @return whether the given objects are equal
     * @see #nullSafeEquals(Object, Object)
     * @see Arrays#equals
     */
    private static boolean arrayEquals(Object o1, Object o2) {
        if (o1 instanceof Object[] && o2 instanceof Object[]) {
            return Arrays.equals((Object[]) o1, (Object[]) o2);
        }
        if (o1 instanceof boolean[] && o2 instanceof boolean[]) {
            return Arrays.equals((boolean[]) o1, (boolean[]) o2);
        }
        if (o1 instanceof byte[] && o2 instanceof byte[]) {
            return Arrays.equals((byte[]) o1, (byte[]) o2);
        }
        if (o1 instanceof char[] && o2 instanceof char[]) {
            return Arrays.equals((char[]) o1, (char[]) o2);
        }
        if (o1 instanceof double[] && o2 instanceof double[]) {
            return Arrays.equals((double[]) o1, (double[]) o2);
        }
        if (o1 instanceof float[] && o2 instanceof float[]) {
            return Arrays.equals((float[]) o1, (float[]) o2);
        }
        if (o1 instanceof int[] && o2 instanceof int[]) {
            return Arrays.equals((int[]) o1, (int[]) o2);
        }
        if (o1 instanceof long[] && o2 instanceof long[]) {
            return Arrays.equals((long[]) o1, (long[]) o2);
        }
        if (o1 instanceof short[] && o2 instanceof short[]) {
            return Arrays.equals((short[]) o1, (short[]) o2);
        }
        return false;
    }

    protected final float getLoadFactor() {
        return this.loadFactor;
    }

    protected final int getSegmentsSize() {
        return this.segments.length;
    }

    protected final Segment getSegment(int index) {
        return this.segments[index];
    }

    /**
     * Factory method that returns the {@link ReferenceManager}.
     * This method will be called once for each {@link Segment}.
     *
     * @return a new reference manager
     */
    protected ReferenceManager createReferenceManager() {
        return new ReferenceManager();
    }

    /**
     * Get the hash for a given object, apply an additional hash function to reduce
     * collisions. This implementation uses the same Wang/Jenkins algorithm as
     * {@link ConcurrentHashMap}. Subclasses can override to provide alternative hashing.
     *
     * @param o the object to hash (may be null)
     * @return the resulting hash code
     */
    protected int getHash(Object o) {
        int hash = (o != null ? o.hashCode() : 0);
        hash += (hash << 15) ^ 0xffffcd7d;
        hash ^= (hash >>> 10);
        hash += (hash << 3);
        hash ^= (hash >>> 6);
        hash += (hash << 2) + (hash << 14);
        hash ^= (hash >>> 16);
        return hash;
    }

    @Override
    public V get(Object key) {
        Entry entry = getEntryIfAvailable(key);
        return (entry != null ? entry.getValue() : null);
    }

    @Override
    public V getOrDefault(Object key, V defaultValue) {
        Entry entry = getEntryIfAvailable(key);
        return (entry != null ? entry.getValue() : defaultValue);
    }

    @Override
    public boolean containsKey(Object key) {
        Entry entry = getEntryIfAvailable(key);
        return (entry != null && nullSafeEquals(entry.getKey(), key));
    }

    private Entry getEntryIfAvailable(Object key) {
        Reference ref = getReference(key, Restructure.WHEN_NECESSARY);
        return (ref != null ? ref.get() : null);
    }

    /**
     * Return a {@link Reference} to the {@link Entry} for the specified {@code key},
     * or {@code null} if not found.
     *
     * @param key         the key (can be {@code null})
     * @param restructure types of restructure allowed during this call
     * @return the reference, or {@code null} if not found
     */
    protected final Reference getReference(Object key, Restructure restructure) {
        int hash = getHash(key);
        return getSegmentForHash(hash).getReference(key, hash, restructure);
    }

    @Override
    public V put(K key, V value) {
        return put(key, value, true);
    }

    @Override
    public V putIfAbsent(K key, V value) {
        return put(key, value, false);
    }

    private V put(final K key, final V value, final boolean overwriteExisting) {
        return doTask(key, new Task(TaskOption.RESTRUCTURE_BEFORE, TaskOption.RESIZE) {
            @Override
            protected V execute(Reference ref, Entry entry, Entries entries) {
                if (entry != null) {
                    V oldValue = entry.getValue();
                    if (overwriteExisting) {
                        entry.setValue(value);
                    }
                    return oldValue;
                }
                entries.add(value);
                return null;
            }
        });
    }

    @Override
    public V remove(Object key) {
        return doTask(key, new Task(TaskOption.RESTRUCTURE_AFTER, TaskOption.SKIP_IF_EMPTY) {
            @Override
            protected V execute(Reference ref, Entry entry) {
                if (entry != null) {
                    if (ref != null) {
                        ref.release();
                    }
                    return entry.value;
                }
                return null;
            }
        });
    }

    @Override
    public boolean remove(Object key, final Object value) {
        Boolean result = doTask(key, new Task(TaskOption.RESTRUCTURE_AFTER, TaskOption.SKIP_IF_EMPTY) {
            @Override
            protected Boolean execute(Reference ref, Entry entry) {
                if (entry != null && nullSafeEquals(entry.getValue(), value)) {
                    if (ref != null) {
                        ref.release();
                    }
                    return Boolean.TRUE;
                }
                return Boolean.FALSE;
            }
        });
        return (result.equals(Boolean.TRUE));
    }

    @Override
    public boolean replace(K key, final V oldValue, final V newValue) {
        Boolean result = doTask(key, new Task(TaskOption.RESTRUCTURE_BEFORE, TaskOption.SKIP_IF_EMPTY) {
            @Override
            protected Boolean execute(Reference ref, Entry entry) {
                if (entry != null && nullSafeEquals(entry.getValue(), oldValue)) {
                    entry.setValue(newValue);
                    return Boolean.TRUE;
                }
                return Boolean.FALSE;
            }
        });
        return (result.equals(Boolean.TRUE));
    }

    @Override
    public V replace(K key, final V value) {
        return doTask(key, new Task(TaskOption.RESTRUCTURE_BEFORE, TaskOption.SKIP_IF_EMPTY) {
            @Override

            protected V execute(Reference ref, Entry entry) {
                if (entry != null) {
                    V oldValue = entry.getValue();
                    entry.setValue(value);
                    return oldValue;
                }
                return null;
            }
        });
    }

    @Override
    public void clear() {
        for (Segment segment : this.segments) {
            segment.clear();
        }
    }

    /**
     * Remove any entries that have been garbage collected and are no longer referenced.
     * Under normal circumstances garbage collected entries are automatically purged as
     * items are added or removed from the Map. This method can be used to force a purge,
     * and is useful when the Map is read frequently but updated less often.
     */
    public void purgeUnreferencedEntries() {
        for (Segment segment : this.segments) {
            segment.restructureIfNecessary(false);
        }
    }

    @Override
    public int size() {
        int size = 0;
        for (Segment segment : this.segments) {
            size += segment.getCount();
        }
        return size;
    }

    @Override
    public boolean isEmpty() {
        for (Segment segment : this.segments) {
            if (segment.getCount() > 0) {
                return false;
            }
        }
        return true;
    }

    @Override
    public Set> entrySet() {
        Set> entrySet = this.entrySet;
        if (entrySet == null) {
            entrySet = new EntrySet();
            this.entrySet = entrySet;
        }
        return entrySet;
    }

    private  T doTask(Object key, Task task) {
        int hash = getHash(key);
        return getSegmentForHash(hash).doTask(hash, key, task);
    }

    private Segment getSegmentForHash(int hash) {
        return this.segments[(hash >>> (32 - this.shift)) & (this.segments.length - 1)];
    }


    /**
     * Various reference types supported by this map.
     */
    public enum ReferenceType {

        /**
         * Use {@link SoftReference SoftReferences}.
         */
        SOFT,

        /**
         * Use {@link WeakReference WeakReferences}.
         */
        WEAK
    }


    /**
     * Various options supported by a {@code Task}.
     */
    private enum TaskOption {

        RESTRUCTURE_BEFORE, RESTRUCTURE_AFTER, SKIP_IF_EMPTY, RESIZE
    }


    /**
     * The types of restructuring that can be performed.
     */
    protected enum Restructure {

        WHEN_NECESSARY, NEVER
    }


    /**
     * A reference to an {@link Entry} contained in the map. Implementations are usually
     * wrappers around specific Java reference implementations (e.g., {@link SoftReference}).
     *
     * @param  the key type
     * @param  the value type
     */
    protected interface Reference {

        /**
         * Return the referenced entry, or {@code null} if the entry is no longer available.
         */

        Entry get();

        /**
         * Return the hash for the reference.
         */
        int getHash();

        /**
         * Return the next reference in the chain, or {@code null} if none.
         */

        Reference getNext();

        /**
         * Release this entry and ensure that it will be returned from
         * {@code ReferenceManager#pollForPurge()}.
         */
        void release();
    }

    /**
     * A single map entry.
     *
     * @param  the key type
     * @param  the value type
     */
    protected static final class Entry implements Map.Entry {


        private final K key;


        private volatile V value;

        public Entry(K key, V value) {
            this.key = key;
            this.value = value;
        }

        @Override

        public K getKey() {
            return this.key;
        }

        @Override

        public V getValue() {
            return this.value;
        }

        @Override

        public V setValue(V value) {
            V previous = this.value;
            this.value = value;
            return previous;
        }

        @Override
        public String toString() {
            return (this.key + "=" + this.value);
        }

        @Override
        @SuppressWarnings("rawtypes")
        public final boolean equals(Object other) {
            if (this == other) {
                return true;
            }
            if (!(other instanceof Map.Entry)) {
                return false;
            }
            Map.Entry otherEntry = (Map.Entry) other;
            return (nullSafeEquals(getKey(), otherEntry.getKey()) &&
                    nullSafeEquals(getValue(), otherEntry.getValue()));
        }

        @Override
        public final int hashCode() {
            return (nullSafeHashCode(this.key) ^ nullSafeHashCode(this.value));
        }
    }

    /**
     * Internal {@link Reference} implementation for {@link SoftReference SoftReferences}.
     */
    private static final class SoftEntryReference extends SoftReference> implements Reference {

        private final int hash;


        private final Reference nextReference;

        public SoftEntryReference(Entry entry, int hash, Reference next,
                                  ReferenceQueue> queue) {

            super(entry, queue);
            this.hash = hash;
            this.nextReference = next;
        }

        @Override
        public int getHash() {
            return this.hash;
        }

        @Override

        public Reference getNext() {
            return this.nextReference;
        }

        @Override
        public void release() {
            enqueue();
            clear();
        }
    }

    /**
     * Internal {@link Reference} implementation for {@link WeakReference WeakReferences}.
     */
    private static final class WeakEntryReference extends WeakReference> implements Reference {

        private final int hash;


        private final Reference nextReference;

        public WeakEntryReference(Entry entry, int hash, Reference next,
                                  ReferenceQueue> queue) {

            super(entry, queue);
            this.hash = hash;
            this.nextReference = next;
        }

        @Override
        public int getHash() {
            return this.hash;
        }

        @Override

        public Reference getNext() {
            return this.nextReference;
        }

        @Override
        public void release() {
            enqueue();
            clear();
        }
    }

    /**
     * A single segment used to divide the map to allow better concurrent performance.
     */
    @SuppressWarnings("serial")
    protected final class Segment extends ReentrantLock {

        private final ReferenceManager referenceManager;

        private final int initialSize;

        /**
         * Array of references indexed using the low order bits from the hash.
         * This property should only be set along with {@code resizeThreshold}.
         */
        private volatile Reference[] references;

        /**
         * The total number of references contained in this segment. This includes chained
         * references and references that have been garbage collected but not purged.
         */
        private volatile int count = 0;

        /**
         * The threshold when resizing of the references should occur. When {@code count}
         * exceeds this value references will be resized.
         */
        private int resizeThreshold;

        public Segment(int initialCapacity) {
            this.referenceManager = createReferenceManager();
            this.initialSize = 1 << calculateShift(initialCapacity, MAXIMUM_SEGMENT_SIZE);
            this.references = createReferenceArray(this.initialSize);
            this.resizeThreshold = (int) (this.references.length * getLoadFactor());
        }


        public Reference getReference(Object key, int hash, Restructure restructure) {
            if (restructure == Restructure.WHEN_NECESSARY) {
                restructureIfNecessary(false);
            }
            if (this.count == 0) {
                return null;
            }
            // Use a local copy to protect against other threads writing
            Reference[] references = this.references;
            int index = getIndex(hash, references);
            Reference head = references[index];
            return findInChain(head, key, hash);
        }

        /**
         * Apply an update operation to this segment.
         * The segment will be locked during the update.
         *
         * @param hash the hash of the key
         * @param key  the key
         * @param task the update operation
         * @return the result of the operation
         */

        public  T doTask(final int hash, final Object key, final Task task) {
            boolean resize = task.hasOption(TaskOption.RESIZE);
            if (task.hasOption(TaskOption.RESTRUCTURE_BEFORE)) {
                restructureIfNecessary(resize);
            }
            if (task.hasOption(TaskOption.SKIP_IF_EMPTY) && this.count == 0) {
                return task.execute(null, null, null);
            }
            lock();
            try {
                final int index = getIndex(hash, this.references);
                final Reference head = this.references[index];
                Reference ref = findInChain(head, key, hash);
                Entry entry = (ref != null ? ref.get() : null);
                Entries entries = new Entries() {
                    @Override
                    public void add(V value) {
                        @SuppressWarnings("unchecked")
                        Entry newEntry = new Entry<>((K) key, value);
                        Reference newReference = Segment.this.referenceManager.createReference(newEntry, hash, head);
                        Segment.this.references[index] = newReference;
                        Segment.this.count++;
                    }
                };
                return task.execute(ref, entry, entries);
            } finally {
                unlock();
                if (task.hasOption(TaskOption.RESTRUCTURE_AFTER)) {
                    restructureIfNecessary(resize);
                }
            }
        }

        /**
         * Clear all items from this segment.
         */
        public void clear() {
            if (this.count == 0) {
                return;
            }
            lock();
            try {
                this.references = createReferenceArray(this.initialSize);
                this.resizeThreshold = (int) (this.references.length * getLoadFactor());
                this.count = 0;
            } finally {
                unlock();
            }
        }

        /**
         * Restructure the underlying data structure when it becomes necessary. This
         * method can increase the size of the references table as well as purge any
         * references that have been garbage collected.
         *
         * @param allowResize if resizing is permitted
         */
        protected final void restructureIfNecessary(boolean allowResize) {
            boolean needsResize = (this.count > 0 && this.count >= this.resizeThreshold);
            Reference ref = this.referenceManager.pollForPurge();
            if (ref != null || (needsResize && allowResize)) {
                lock();
                try {
                    int countAfterRestructure = this.count;
                    Set> toPurge = Collections.emptySet();
                    if (ref != null) {
                        toPurge = new HashSet<>();
                        while (ref != null) {
                            toPurge.add(ref);
                            ref = this.referenceManager.pollForPurge();
                        }
                    }
                    countAfterRestructure -= toPurge.size();

                    // Recalculate taking into account count inside lock and items that
                    // will be purged
                    needsResize = (countAfterRestructure > 0 && countAfterRestructure >= this.resizeThreshold);
                    boolean resizing = false;
                    int restructureSize = this.references.length;
                    if (allowResize && needsResize && restructureSize < MAXIMUM_SEGMENT_SIZE) {
                        restructureSize <<= 1;
                        resizing = true;
                    }

                    // Either create a new table or reuse the existing one
                    Reference[] restructured =
                            (resizing ? createReferenceArray(restructureSize) : this.references);

                    // Restructure
                    for (int i = 0; i < this.references.length; i++) {
                        ref = this.references[i];
                        if (!resizing) {
                            restructured[i] = null;
                        }
                        while (ref != null) {
                            if (!toPurge.contains(ref)) {
                                Entry entry = ref.get();
                                if (entry != null) {
                                    int index = getIndex(ref.getHash(), restructured);
                                    restructured[index] = this.referenceManager.createReference(
                                            entry, ref.getHash(), restructured[index]);
                                }
                            }
                            ref = ref.getNext();
                        }
                    }

                    // Replace volatile members
                    if (resizing) {
                        this.references = restructured;
                        this.resizeThreshold = (int) (this.references.length * getLoadFactor());
                    }
                    this.count = Math.max(countAfterRestructure, 0);
                } finally {
                    unlock();
                }
            }
        }


        private Reference findInChain(Reference ref, Object key, int hash) {
            Reference currRef = ref;
            while (currRef != null) {
                if (currRef.getHash() == hash) {
                    Entry entry = currRef.get();
                    if (entry != null) {
                        K entryKey = entry.getKey();
                        if (nullSafeEquals(entryKey, key)) {
                            return currRef;
                        }
                    }
                }
                currRef = currRef.getNext();
            }
            return null;
        }

        @SuppressWarnings({"rawtypes", "unchecked"})
        private Reference[] createReferenceArray(int size) {
            return new Reference[size];
        }

        private int getIndex(int hash, Reference[] references) {
            return (hash & (references.length - 1));
        }

        /**
         * Return the size of the current references array.
         */
        public final int getSize() {
            return this.references.length;
        }

        /**
         * Return the total number of references in this segment.
         */
        public final int getCount() {
            return this.count;
        }
    }

    /**
     * A task that can be {@link Segment#doTask run} against a {@link Segment}.
     */
    private abstract class Task {

        private final EnumSet options;

        public Task(TaskOption... options) {
            this.options = (options.length == 0 ? EnumSet.noneOf(TaskOption.class) : EnumSet.of(options[0], options));
        }

        public boolean hasOption(TaskOption option) {
            return this.options.contains(option);
        }

        /**
         * Execute the task.
         *
         * @param ref     the found reference (or {@code null})
         * @param entry   the found entry (or {@code null})
         * @param entries access to the underlying entries
         * @return the result of the task
         * @see #execute(Reference, Entry)
         */

        protected T execute(Reference ref, Entry entry, Entries entries) {
            return execute(ref, entry);
        }

        /**
         * Convenience method that can be used for tasks that do not need access to {@link Entries}.
         *
         * @param ref   the found reference (or {@code null})
         * @param entry the found entry (or {@code null})
         * @return the result of the task
         * @see #execute(Reference, Entry, Entries)
         */

        protected T execute(Reference ref, Entry entry) {
            return null;
        }
    }

    /**
     * Allows a task access to {@link Segment} entries.
     */
    private abstract class Entries {

        /**
         * Add a new entry with the specified value.
         *
         * @param value the value to add
         */
        public abstract void add(V value);
    }

    /**
     * Internal entry-set implementation.
     */
    private class EntrySet extends AbstractSet> {

        @Override
        public Iterator> iterator() {
            return new EntryIterator();
        }

        @Override
        public boolean contains(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry entry = (Map.Entry) o;
                Reference ref = ConcurrentReferenceHashMap.this.getReference(entry.getKey(), Restructure.NEVER);
                Entry otherEntry = (ref != null ? ref.get() : null);
                if (otherEntry != null) {
                    return nullSafeEquals(otherEntry.getValue(), otherEntry.getValue());
                }
            }
            return false;
        }

        @Override
        public boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry entry = (Map.Entry) o;
                return ConcurrentReferenceHashMap.this.remove(entry.getKey(), entry.getValue());
            }
            return false;
        }

        @Override
        public int size() {
            return ConcurrentReferenceHashMap.this.size();
        }

        @Override
        public void clear() {
            ConcurrentReferenceHashMap.this.clear();
        }
    }

    /**
     * Internal entry iterator implementation.
     */
    private class EntryIterator implements Iterator> {

        private int segmentIndex;

        private int referenceIndex;


        private Reference[] references;


        private Reference reference;


        private Entry next;


        private Entry last;

        public EntryIterator() {
            moveToNextSegment();
        }

        @Override
        public boolean hasNext() {
            getNextIfNecessary();
            return (this.next != null);
        }

        @Override
        public Entry next() {
            getNextIfNecessary();
            if (this.next == null) {
                throw new NoSuchElementException();
            }
            this.last = this.next;
            this.next = null;
            return this.last;
        }

        private void getNextIfNecessary() {
            while (this.next == null) {
                moveToNextReference();
                if (this.reference == null) {
                    return;
                }
                this.next = this.reference.get();
            }
        }

        private void moveToNextReference() {
            if (this.reference != null) {
                this.reference = this.reference.getNext();
            }
            while (this.reference == null && this.references != null) {
                if (this.referenceIndex >= this.references.length) {
                    moveToNextSegment();
                    this.referenceIndex = 0;
                } else {
                    this.reference = this.references[this.referenceIndex];
                    this.referenceIndex++;
                }
            }
        }

        private void moveToNextSegment() {
            this.reference = null;
            this.references = null;
            if (this.segmentIndex < ConcurrentReferenceHashMap.this.segments.length) {
                this.references = ConcurrentReferenceHashMap.this.segments[this.segmentIndex].references;
                this.segmentIndex++;
            }
        }

        @Override
        public void remove() {
            ConcurrentReferenceHashMap.this.remove(this.last.getKey());
        }
    }

    /**
     * Strategy class used to manage {@link Reference References}. This class can be overridden if
     * alternative reference types need to be supported.
     */
    protected class ReferenceManager {

        private final ReferenceQueue> queue = new ReferenceQueue<>();

        /**
         * Factory method used to create a new {@link Reference}.
         *
         * @param entry the entry contained in the reference
         * @param hash  the hash
         * @param next  the next reference in the chain, or {@code null} if none
         * @return a new {@link Reference}
         */
        public Reference createReference(Entry entry, int hash, Reference next) {
            if (ConcurrentReferenceHashMap.this.referenceType == ReferenceType.WEAK) {
                return new WeakEntryReference<>(entry, hash, next, this.queue);
            }
            return new SoftEntryReference<>(entry, hash, next, this.queue);
        }

        /**
         * Return any reference that has been garbage collected and can be purged from the
         * underlying structure or {@code null} if no references need purging. This
         * method must be thread safe and ideally should not block when returning
         * {@code null}. References should be returned once and only once.
         *
         * @return a reference to purge or {@code null}
         */
        @SuppressWarnings("unchecked")

        public Reference pollForPurge() {
            return (Reference) this.queue.poll();
        }
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy