All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jtransforms.dht.DoubleDHT_2D Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/* ***** BEGIN LICENSE BLOCK *****
 * JTransforms
 * Copyright (c) 2007 onward, Piotr Wendykier
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ***** END LICENSE BLOCK ***** */
package org.jtransforms.dht;

import java.util.concurrent.Future;
import org.jtransforms.utils.ConcurrencyUtils;
import pl.edu.icm.jlargearrays.DoubleLargeArray;

/**
 * Computes 2D Discrete Hartley Transform (DHT) of real, double precision data.
 * The sizes of both dimensions can be arbitrary numbers. This is a parallel
 * implementation optimized for SMP systems.
*
* Part of code is derived from General Purpose FFT Package written by Takuya * Ooura (http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html) * * @author Piotr Wendykier ([email protected]) */ public class DoubleDHT_2D { private int rows; private int columns; private long rowsl; private long columnsl; private DoubleDHT_1D dhtColumns, dhtRows; private boolean isPowerOfTwo = false; private boolean useThreads = false; /** * Creates new instance of DoubleDHT_2D. * * @param rows number of rows * @param columns number of columns */ public DoubleDHT_2D(long rows, long columns) { if (rows <= 1 || columns <= 1) { throw new IllegalArgumentException("rows and columns must be greater than 1"); } this.rows = (int) rows; this.columns = (int) columns; this.rowsl = rows; this.columnsl = columns; if (rows * columns >= ConcurrencyUtils.getThreadsBeginN_2D()) { this.useThreads = true; } if (ConcurrencyUtils.isPowerOf2(rows) && ConcurrencyUtils.isPowerOf2(columns)) { isPowerOfTwo = true; } long largeArraysBenginN = ConcurrencyUtils.getLargeArraysBeginN(); if (rows * columns > (1 << 28)) { ConcurrencyUtils.setLargeArraysBeginN(Math.min(rows, columns)); } dhtRows = new DoubleDHT_1D(rows); if (rows == columns) { dhtColumns = dhtRows; } else { dhtColumns = new DoubleDHT_1D(columns); } ConcurrencyUtils.setLargeArraysBeginN(largeArraysBenginN); } /** * Computes 2D real, forward DHT leaving the result in a. The * data is stored in 1D array in row-major order. * * @param a data to transform */ public void forward(final double[] a) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(-1, a, true); ddxt2d0_subth(-1, a, true); } else { ddxt2d_sub(-1, a, true); for (int i = 0; i < rows; i++) { dhtColumns.forward(a, i * columns); } } DoubleDHT_2D.this.yTransform(a); } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dhtColumns.forward(a, i * columns); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { double[] temp = new double[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dhtRows.forward(temp); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dhtColumns.forward(a, i * columns); } double[] temp = new double[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dhtRows.forward(temp); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } yTransform(a); } } /** * Computes 2D real, forward DHT leaving the result in a. The * data is stored in 1D array in row-major order. * * @param a data to transform */ public void forward(final DoubleLargeArray a) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(-1, a, true); ddxt2d0_subth(-1, a, true); } else { ddxt2d_sub(-1, a, true); for (long i = 0; i < rowsl; i++) { dhtColumns.forward(a, i * columnsl); } } yTransform(a); } else { if ((nthreads > 1) && useThreads && (rowsl >= nthreads) && (columnsl >= nthreads)) { Future[] futures = new Future[nthreads]; long p = rowsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstRow = l * p; final long lastRow = (l == (nthreads - 1)) ? rowsl : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (long i = firstRow; i < lastRow; i++) { dhtColumns.forward(a, i * columnsl); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columnsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstColumn = l * p; final long lastColumn = (l == (nthreads - 1)) ? columnsl : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { DoubleLargeArray temp = new DoubleLargeArray(rowsl, false); for (long c = firstColumn; c < lastColumn; c++) { for (long r = 0; r < rowsl; r++) { temp.setDouble(r, a.getDouble(r * columnsl + c)); } dhtRows.forward(temp); for (long r = 0; r < rowsl; r++) { a.setDouble(r * columnsl + c, temp.getDouble(r)); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (long i = 0; i < rowsl; i++) { dhtColumns.forward(a, i * columnsl); } DoubleLargeArray temp = new DoubleLargeArray(rowsl, false); for (long c = 0; c < columnsl; c++) { for (long r = 0; r < rowsl; r++) { temp.setDouble(r, a.getDouble(r * columnsl + c)); } dhtRows.forward(temp); for (long r = 0; r < rowsl; r++) { a.setDouble(r * columnsl + c, temp.getDouble(r)); } } } yTransform(a); } } /** * Computes 2D real, forward DHT leaving the result in a. The * data is stored in 2D array. * * @param a data to transform */ public void forward(final double[][] a) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(-1, a, true); ddxt2d0_subth(-1, a, true); } else { ddxt2d_sub(-1, a, true); for (int i = 0; i < rows; i++) { dhtColumns.forward(a[i]); } } yTransform(a); } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dhtColumns.forward(a[i]); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { double[] temp = new double[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dhtRows.forward(temp); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dhtColumns.forward(a[i]); } double[] temp = new double[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dhtRows.forward(temp); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } yTransform(a); } } /** * Computes 2D real, inverse DHT leaving the result in a. The * data is stored in 1D array in row-major order. * * @param a data to transform * @param scale if true then scaling is performed */ public void inverse(final double[] a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(1, a, scale); ddxt2d0_subth(1, a, scale); } else { ddxt2d_sub(1, a, scale); for (int i = 0; i < rows; i++) { dhtColumns.inverse(a, i * columns, scale); } } yTransform(a); } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dhtColumns.inverse(a, i * columns, scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { double[] temp = new double[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dhtRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dhtColumns.inverse(a, i * columns, scale); } double[] temp = new double[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dhtRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } yTransform(a); } } /** * Computes 2D real, inverse DHT leaving the result in a. The * data is stored in 1D array in row-major order. * * @param a data to transform * @param scale if true then scaling is performed */ public void inverse(final DoubleLargeArray a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(1, a, scale); ddxt2d0_subth(1, a, scale); } else { ddxt2d_sub(1, a, scale); for (long i = 0; i < rowsl; i++) { dhtColumns.inverse(a, i * columnsl, scale); } } yTransform(a); } else { if ((nthreads > 1) && useThreads && (rowsl >= nthreads) && (columnsl >= nthreads)) { Future[] futures = new Future[nthreads]; long p = rowsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstRow = l * p; final long lastRow = (l == (nthreads - 1)) ? rowsl : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (long i = firstRow; i < lastRow; i++) { dhtColumns.inverse(a, i * columnsl, scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columnsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstColumn = l * p; final long lastColumn = (l == (nthreads - 1)) ? columnsl : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { DoubleLargeArray temp = new DoubleLargeArray(rowsl, false); for (long c = firstColumn; c < lastColumn; c++) { for (long r = 0; r < rowsl; r++) { temp.setDouble(r, a.getDouble(r * columnsl + c)); } dhtRows.inverse(temp, scale); for (long r = 0; r < rowsl; r++) { a.setDouble(r * columnsl + c, temp.getDouble(r)); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (long i = 0; i < rowsl; i++) { dhtColumns.inverse(a, i * columnsl, scale); } DoubleLargeArray temp = new DoubleLargeArray(rowsl, false); for (long c = 0; c < columnsl; c++) { for (long r = 0; r < rowsl; r++) { temp.setDouble(r, a.getDouble(r * columnsl + c)); } dhtRows.inverse(temp, scale); for (long r = 0; r < rowsl; r++) { a.setDouble(r * columnsl + c, temp.getDouble(r)); } } } yTransform(a); } } /** * Computes 2D real, inverse DHT leaving the result in a. The * data is stored in 2D array. * * @param a data to transform * @param scale if true then scaling is performed */ public void inverse(final double[][] a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(1, a, scale); ddxt2d0_subth(1, a, scale); } else { ddxt2d_sub(1, a, scale); for (int i = 0; i < rows; i++) { dhtColumns.inverse(a[i], scale); } } yTransform(a); } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dhtColumns.inverse(a[i], scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { double[] temp = new double[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dhtRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dhtColumns.inverse(a[i], scale); } double[] temp = new double[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dhtRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } yTransform(a); } } private void ddxt2d_subth(final int isgn, final double[] a, final boolean scale) { int nthread = Math.min(columns, ConcurrencyUtils.getNumberOfThreads()); int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } final int ntf = nt; final int nthreads = nthread; Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx1, idx2; double[] t = new double[ntf]; if (columns > 2) { if (isgn == -1) { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dhtRows.forward(t, 0); dhtRows.forward(t, rows); dhtRows.forward(t, 2 * rows); dhtRows.forward(t, 3 * rows); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); dhtRows.inverse(t, 2 * rows, scale); dhtRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx1 = r * columns + 2 * n0; idx2 = r; t[idx2] = a[idx1]; t[idx2 + rows] = a[idx1 + 1]; } if (isgn == -1) { dhtRows.forward(t, 0); dhtRows.forward(t, rows); } else { dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { idx1 = r * columns + 2 * n0; idx2 = r; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + rows]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d_subth(final int isgn, final DoubleLargeArray a, final boolean scale) { int nthread = (int) Math.min(columnsl, ConcurrencyUtils.getNumberOfThreads()); long nt = 4 * rowsl; if (columnsl == 2) { nt >>= 1; } else if (columnsl < 2) { nt >>= 2; } final long ntf = nt; final int nthreads = nthread; Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final long n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { long idx1, idx2; DoubleLargeArray t = new DoubleLargeArray(ntf, false); if (columnsl > 2) { if (isgn == -1) { for (long c = 4 * n0; c < columnsl; c += 4 * nthreads) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setDouble(r, a.getDouble(idx1)); t.setDouble(idx2, a.getDouble(idx1 + 1)); t.setDouble(idx2 + rowsl, a.getDouble(idx1 + 2)); t.setDouble(idx2 + 2 * rowsl, a.getDouble(idx1 + 3)); } dhtRows.forward(t, 0); dhtRows.forward(t, rowsl); dhtRows.forward(t, 2 * rowsl); dhtRows.forward(t, 3 * rowsl); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setDouble(idx1, t.getDouble(r)); a.setDouble(idx1 + 1, t.getDouble(idx2)); a.setDouble(idx1 + 2, t.getDouble(idx2 + rowsl)); a.setDouble(idx1 + 3, t.getDouble(idx2 + 2 * rowsl)); } } } else { for (long c = 4 * n0; c < columnsl; c += 4 * nthreads) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setDouble(r, a.getDouble(idx1)); t.setDouble(idx2, a.getDouble(idx1 + 1)); t.setDouble(idx2 + rowsl, a.getDouble(idx1 + 2)); t.setDouble(idx2 + 2 * rowsl, a.getDouble(idx1 + 3)); } dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rowsl, scale); dhtRows.inverse(t, 2 * rowsl, scale); dhtRows.inverse(t, 3 * rowsl, scale); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setDouble(idx1, t.getDouble(r)); a.setDouble(idx1 + 1, t.getDouble(idx2)); a.setDouble(idx1 + 2, t.getDouble(idx2 + rowsl)); a.setDouble(idx1 + 3, t.getDouble(idx2 + 2 * rowsl)); } } } } else if (columnsl == 2) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + 2 * n0; idx2 = r; t.setDouble(idx2, a.getDouble(idx1)); t.setDouble(idx2 + rowsl, a.getDouble(idx1 + 1)); } if (isgn == -1) { dhtRows.forward(t, 0); dhtRows.forward(t, rowsl); } else { dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rowsl, scale); } for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + 2 * n0; idx2 = r; a.setDouble(idx1, t.getDouble(idx2)); a.setDouble(idx1 + 1, t.getDouble(idx2 + rowsl)); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d_subth(final int isgn, final double[][] a, final boolean scale) { int nthread = Math.min(columns, ConcurrencyUtils.getNumberOfThreads()); int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } final int ntf = nt; final int nthreads = nthread; Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx2; double[] t = new double[ntf]; if (columns > 2) { if (isgn == -1) { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dhtRows.forward(t, 0); dhtRows.forward(t, rows); dhtRows.forward(t, 2 * rows); dhtRows.forward(t, 3 * rows); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); dhtRows.inverse(t, 2 * rows, scale); dhtRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx2 = r; t[idx2] = a[r][2 * n0]; t[idx2 + rows] = a[r][2 * n0 + 1]; } if (isgn == -1) { dhtRows.forward(t, 0); dhtRows.forward(t, rows); } else { dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { idx2 = r; a[r][2 * n0] = t[idx2]; a[r][2 * n0 + 1] = t[idx2 + rows]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d0_subth(final int isgn, final double[] a, final boolean scale) { final int nthreads = ConcurrencyUtils.getNumberOfThreads() > rows ? rows : ConcurrencyUtils.getNumberOfThreads(); Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { if (isgn == -1) { for (int r = n0; r < rows; r += nthreads) { dhtColumns.forward(a, r * columns); } } else { for (int r = n0; r < rows; r += nthreads) { dhtColumns.inverse(a, r * columns, scale); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d0_subth(final int isgn, final DoubleLargeArray a, final boolean scale) { final int nthreads = (int) (ConcurrencyUtils.getNumberOfThreads() > rowsl ? rowsl : ConcurrencyUtils.getNumberOfThreads()); Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final long n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { if (isgn == -1) { for (long r = n0; r < rowsl; r += nthreads) { dhtColumns.forward(a, r * columnsl); } } else { for (long r = n0; r < rowsl; r += nthreads) { dhtColumns.inverse(a, r * columnsl, scale); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d0_subth(final int isgn, final double[][] a, final boolean scale) { final int nthreads = ConcurrencyUtils.getNumberOfThreads() > rows ? rows : ConcurrencyUtils.getNumberOfThreads(); Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { if (isgn == -1) { for (int r = n0; r < rows; r += nthreads) { dhtColumns.forward(a[r]); } } else { for (int r = n0; r < rows; r += nthreads) { dhtColumns.inverse(a[r], scale); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d_sub(int isgn, double[] a, boolean scale) { int idx1, idx2; int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } double[] t = new double[nt]; if (columns > 2) { if (isgn == -1) { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dhtRows.forward(t, 0); dhtRows.forward(t, rows); dhtRows.forward(t, 2 * rows); dhtRows.forward(t, 3 * rows); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); dhtRows.inverse(t, 2 * rows, scale); dhtRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx1 = r * columns; t[r] = a[idx1]; t[rows + r] = a[idx1 + 1]; } if (isgn == -1) { dhtRows.forward(t, 0); dhtRows.forward(t, rows); } else { dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { idx1 = r * columns; a[idx1] = t[r]; a[idx1 + 1] = t[rows + r]; } } } private void ddxt2d_sub(int isgn, DoubleLargeArray a, boolean scale) { long idx1, idx2; long nt = 4 * rowsl; if (columnsl == 2) { nt >>= 1; } else if (columnsl < 2) { nt >>= 2; } DoubleLargeArray t = new DoubleLargeArray(nt, false); if (columnsl > 2) { if (isgn == -1) { for (long c = 0; c < columnsl; c += 4) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setDouble(r, a.getDouble(idx1)); t.setDouble(idx2, a.getDouble(idx1 + 1)); t.setDouble(idx2 + rowsl, a.getDouble(idx1 + 2)); t.setDouble(idx2 + 2 * rowsl, a.getDouble(idx1 + 3)); } dhtRows.forward(t, 0); dhtRows.forward(t, rowsl); dhtRows.forward(t, 2 * rowsl); dhtRows.forward(t, 3 * rowsl); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setDouble(idx1, t.getDouble(r)); a.setDouble(idx1 + 1, t.getDouble(idx2)); a.setDouble(idx1 + 2, t.getDouble(idx2 + rowsl)); a.setDouble(idx1 + 3, t.getDouble(idx2 + 2 * rowsl)); } } } else { for (long c = 0; c < columnsl; c += 4) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setDouble(r, a.getDouble(idx1)); t.setDouble(idx2, a.getDouble(idx1 + 1)); t.setDouble(idx2 + rowsl, a.getDouble(idx1 + 2)); t.setDouble(idx2 + 2 * rowsl, a.getDouble(idx1 + 3)); } dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rowsl, scale); dhtRows.inverse(t, 2 * rowsl, scale); dhtRows.inverse(t, 3 * rowsl, scale); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setDouble(idx1, t.getDouble(r)); a.setDouble(idx1 + 1, t.getDouble(idx2)); a.setDouble(idx1 + 2, t.getDouble(idx2 + rowsl)); a.setDouble(idx1 + 3, t.getDouble(idx2 + 2 * rowsl)); } } } } else if (columnsl == 2) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl; t.setDouble(r, a.getDouble(idx1)); t.setDouble(rowsl + r, a.getDouble(idx1 + 1)); } if (isgn == -1) { dhtRows.forward(t, 0); dhtRows.forward(t, rowsl); } else { dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rowsl, scale); } for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl; a.setDouble(idx1, t.getDouble(r)); a.setDouble(idx1 + 1, t.getDouble(rowsl + r)); } } } private void ddxt2d_sub(int isgn, double[][] a, boolean scale) { int idx2; int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } double[] t = new double[nt]; if (columns > 2) { if (isgn == -1) { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dhtRows.forward(t, 0); dhtRows.forward(t, rows); dhtRows.forward(t, 2 * rows); dhtRows.forward(t, 3 * rows); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); dhtRows.inverse(t, 2 * rows, scale); dhtRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { t[r] = a[r][0]; t[rows + r] = a[r][1]; } if (isgn == -1) { dhtRows.forward(t, 0); dhtRows.forward(t, rows); } else { dhtRows.inverse(t, 0, scale); dhtRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { a[r][0] = t[r]; a[r][1] = t[rows + r]; } } } private void yTransform(double[] a) { int mRow, mCol, idx1, idx2; double A, B, C, D, E; for (int r = 0; r <= rows / 2; r++) { mRow = (rows - r) % rows; idx1 = r * columns; idx2 = mRow * columns; for (int c = 0; c <= columns / 2; c++) { mCol = (columns - c) % columns; A = a[idx1 + c]; B = a[idx2 + c]; C = a[idx1 + mCol]; D = a[idx2 + mCol]; E = ((A + D) - (B + C)) / 2; a[idx1 + c] = A - E; a[idx2 + c] = B + E; a[idx1 + mCol] = C + E; a[idx2 + mCol] = D - E; } } } private void yTransform(DoubleLargeArray a) { long mRow, mCol, idx1, idx2; double A, B, C, D, E; for (long r = 0; r <= rowsl / 2; r++) { mRow = (rowsl - r) % rowsl; idx1 = r * columnsl; idx2 = mRow * columnsl; for (long c = 0; c <= columnsl / 2; c++) { mCol = (columnsl - c) % columnsl; A = a.getDouble(idx1 + c); B = a.getDouble(idx2 + c); C = a.getDouble(idx1 + mCol); D = a.getDouble(idx2 + mCol); E = ((A + D) - (B + C)) / 2; a.setDouble(idx1 + c, A - E); a.setDouble(idx2 + c, B + E); a.setDouble(idx1 + mCol, C + E); a.setDouble(idx2 + mCol, D - E); } } } private void yTransform(double[][] a) { int mRow, mCol; double A, B, C, D, E; for (int r = 0; r <= rows / 2; r++) { mRow = (rows - r) % rows; for (int c = 0; c <= columns / 2; c++) { mCol = (columns - c) % columns; A = a[r][c]; B = a[mRow][c]; C = a[r][mCol]; D = a[mRow][mCol]; E = ((A + D) - (B + C)) / 2; a[r][c] = A - E; a[mRow][c] = B + E; a[r][mCol] = C + E; a[mRow][mCol] = D - E; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy