All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.jtransforms.dst.FloatDST_2D Maven / Gradle / Ivy

There is a newer version: 3.1
Show newest version
/* ***** BEGIN LICENSE BLOCK *****
 * JTransforms
 * Copyright (c) 2007 onward, Piotr Wendykier
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer. 
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * ***** END LICENSE BLOCK ***** */
package org.jtransforms.dst;

import java.util.concurrent.Future;
import org.jtransforms.utils.ConcurrencyUtils;
import pl.edu.icm.jlargearrays.FloatLargeArray;

/**
 * Computes 2D Discrete Sine Transform (DST) of single precision data. The sizes
 * of both dimensions can be arbitrary numbers. This is a parallel
 * implementation optimized for SMP systems.
*
* Part of code is derived from General Purpose FFT Package written by Takuya * Ooura (http://www.kurims.kyoto-u.ac.jp/~ooura/fft.html) * * @author Piotr Wendykier ([email protected]) */ public class FloatDST_2D { private int rows; private int columns; private long rowsl; private long columnsl; private FloatDST_1D dstColumns, dstRows; private boolean isPowerOfTwo = false; private boolean useThreads = false; /** * Creates new instance of FloatDST_2D. * * @param rows number of rows * @param columns number of columns */ public FloatDST_2D(long rows, long columns) { if (rows <= 1 || columns <= 1) { throw new IllegalArgumentException("rows and columns must be greater than 1"); } this.rows = (int) rows; this.columns = (int) columns; this.rowsl = rows; this.columnsl = columns; if (rows * columns >= ConcurrencyUtils.getThreadsBeginN_2D()) { useThreads = true; } if (ConcurrencyUtils.isPowerOf2(rows) && ConcurrencyUtils.isPowerOf2(columns)) { isPowerOfTwo = true; } long largeArraysBenginN = ConcurrencyUtils.getLargeArraysBeginN(); if (rows * columns > (1 << 28)) { ConcurrencyUtils.setLargeArraysBeginN(Math.min(rows, columns)); } dstRows = new FloatDST_1D(rows); if (rows == columns) { dstColumns = dstRows; } else { dstColumns = new FloatDST_1D(columns); } ConcurrencyUtils.setLargeArraysBeginN(largeArraysBenginN); } /** * Computes 2D forward DST (DST-II) leaving the result in a. * The data is stored in 1D array in row-major order. * * @param a data to transform * @param scale if true then scaling is performed */ public void forward(final float[] a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(-1, a, scale); ddxt2d0_subth(-1, a, scale); } else { ddxt2d_sub(-1, a, scale); for (int i = 0; i < rows; i++) { dstColumns.forward(a, i * columns, scale); } } } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dstColumns.forward(a, i * columns, scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { float[] temp = new float[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dstRows.forward(temp, scale); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dstColumns.forward(a, i * columns, scale); } float[] temp = new float[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dstRows.forward(temp, scale); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } } } /** * Computes 2D forward DST (DST-II) leaving the result in a. * The data is stored in 1D array in row-major order. * * @param a data to transform * @param scale if true then scaling is performed */ public void forward(final FloatLargeArray a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(-1, a, scale); ddxt2d0_subth(-1, a, scale); } else { ddxt2d_sub(-1, a, scale); for (long i = 0; i < rowsl; i++) { dstColumns.forward(a, i * columnsl, scale); } } } else { if ((nthreads > 1) && useThreads && (rowsl >= nthreads) && (columnsl >= nthreads)) { Future[] futures = new Future[nthreads]; long p = rowsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstRow = l * p; final long lastRow = (l == (nthreads - 1)) ? rowsl : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (long i = firstRow; i < lastRow; i++) { dstColumns.forward(a, i * columnsl, scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columnsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstColumn = l * p; final long lastColumn = (l == (nthreads - 1)) ? columnsl : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { FloatLargeArray temp = new FloatLargeArray(rowsl, false); for (long c = firstColumn; c < lastColumn; c++) { for (long r = 0; r < rowsl; r++) { temp.setFloat(r, a.getFloat(r * columnsl + c)); } dstRows.forward(temp, scale); for (long r = 0; r < rowsl; r++) { a.setFloat(r * columnsl + c, temp.getFloat(r)); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (long i = 0; i < rowsl; i++) { dstColumns.forward(a, i * columnsl, scale); } FloatLargeArray temp = new FloatLargeArray(rowsl, false); for (long c = 0; c < columnsl; c++) { for (long r = 0; r < rowsl; r++) { temp.setFloat(r, a.getFloat(r * columnsl + c)); } dstRows.forward(temp, scale); for (long r = 0; r < rowsl; r++) { a.setFloat(r * columnsl + c, temp.getFloat(r)); } } } } } /** * Computes 2D forward DST (DST-II) leaving the result in a. * The data is stored in 2D array. * * @param a data to transform * @param scale if true then scaling is performed */ public void forward(final float[][] a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(-1, a, scale); ddxt2d0_subth(-1, a, scale); } else { ddxt2d_sub(-1, a, scale); for (int i = 0; i < rows; i++) { dstColumns.forward(a[i], scale); } } } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dstColumns.forward(a[i], scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { float[] temp = new float[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dstRows.forward(temp, scale); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dstColumns.forward(a[i], scale); } float[] temp = new float[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dstRows.forward(temp, scale); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } } } /** * Computes 2D inverse DST (DST-III) leaving the result in a. * The data is stored in 1D array in row-major order. * * @param a data to transform * @param scale if true then scaling is performed */ public void inverse(final float[] a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(1, a, scale); ddxt2d0_subth(1, a, scale); } else { ddxt2d_sub(1, a, scale); for (int i = 0; i < rows; i++) { dstColumns.inverse(a, i * columns, scale); } } } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dstColumns.inverse(a, i * columns, scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { float[] temp = new float[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dstRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dstColumns.inverse(a, i * columns, scale); } float[] temp = new float[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r * columns + c]; } dstRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r * columns + c] = temp[r]; } } } } } /** * Computes 2D inverse DST (DST-III) leaving the result in a. * The data is stored in 1D array in row-major order. * * @param a data to transform * @param scale if true then scaling is performed */ public void inverse(final FloatLargeArray a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(1, a, scale); ddxt2d0_subth(1, a, scale); } else { ddxt2d_sub(1, a, scale); for (long i = 0; i < rowsl; i++) { dstColumns.inverse(a, i * columnsl, scale); } } } else { if ((nthreads > 1) && useThreads && (rowsl >= nthreads) && (columnsl >= nthreads)) { Future[] futures = new Future[nthreads]; long p = rowsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstRow = l * p; final long lastRow = (l == (nthreads - 1)) ? rowsl : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (long i = firstRow; i < lastRow; i++) { dstColumns.inverse(a, i * columnsl, scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columnsl / nthreads; for (int l = 0; l < nthreads; l++) { final long firstColumn = l * p; final long lastColumn = (l == (nthreads - 1)) ? columnsl : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { FloatLargeArray temp = new FloatLargeArray(rowsl, false); for (long c = firstColumn; c < lastColumn; c++) { for (long r = 0; r < rowsl; r++) { temp.setFloat(r, a.getFloat(r * columnsl + c)); } dstRows.inverse(temp, scale); for (long r = 0; r < rowsl; r++) { a.setFloat(r * columnsl + c, temp.getFloat(r)); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (long i = 0; i < rowsl; i++) { dstColumns.inverse(a, i * columnsl, scale); } FloatLargeArray temp = new FloatLargeArray(rowsl, false); for (long c = 0; c < columnsl; c++) { for (long r = 0; r < rowsl; r++) { temp.setFloat(r, a.getFloat(r * columnsl + c)); } dstRows.inverse(temp, scale); for (long r = 0; r < rowsl; r++) { a.setFloat(r * columnsl + c, temp.getFloat(r)); } } } } } /** * Computes 2D inverse DST (DST-III) leaving the result in a. * The data is stored in 2D array. * * @param a data to transform * @param scale if true then scaling is performed */ public void inverse(final float[][] a, final boolean scale) { int nthreads = ConcurrencyUtils.getNumberOfThreads(); if (isPowerOfTwo) { if ((nthreads > 1) && useThreads) { ddxt2d_subth(1, a, scale); ddxt2d0_subth(1, a, scale); } else { ddxt2d_sub(1, a, scale); for (int i = 0; i < rows; i++) { dstColumns.inverse(a[i], scale); } } } else { if ((nthreads > 1) && useThreads && (rows >= nthreads) && (columns >= nthreads)) { Future[] futures = new Future[nthreads]; int p = rows / nthreads; for (int l = 0; l < nthreads; l++) { final int firstRow = l * p; final int lastRow = (l == (nthreads - 1)) ? rows : firstRow + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { for (int i = firstRow; i < lastRow; i++) { dstColumns.inverse(a[i], scale); } } }); } ConcurrencyUtils.waitForCompletion(futures); p = columns / nthreads; for (int l = 0; l < nthreads; l++) { final int firstColumn = l * p; final int lastColumn = (l == (nthreads - 1)) ? columns : firstColumn + p; futures[l] = ConcurrencyUtils.submit(new Runnable() { public void run() { float[] temp = new float[rows]; for (int c = firstColumn; c < lastColumn; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dstRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } else { for (int i = 0; i < rows; i++) { dstColumns.inverse(a[i], scale); } float[] temp = new float[rows]; for (int c = 0; c < columns; c++) { for (int r = 0; r < rows; r++) { temp[r] = a[r][c]; } dstRows.inverse(temp, scale); for (int r = 0; r < rows; r++) { a[r][c] = temp[r]; } } } } } private void ddxt2d_subth(final int isgn, final float[] a, final boolean scale) { int nthread = Math.min(columns, ConcurrencyUtils.getNumberOfThreads()); int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } final int ntf = nt; final int nthreads = nthread; Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx1, idx2; float[] t = new float[ntf]; if (columns > 2) { if (isgn == -1) { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); dstRows.forward(t, 2 * rows, scale); dstRows.forward(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); dstRows.inverse(t, 2 * rows, scale); dstRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx1 = r * columns + 2 * n0; idx2 = r; t[idx2] = a[idx1]; t[idx2 + rows] = a[idx1 + 1]; } if (isgn == -1) { dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); } else { dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { idx1 = r * columns + 2 * n0; idx2 = r; a[idx1] = t[idx2]; a[idx1 + 1] = t[idx2 + rows]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d_subth(final int isgn, final FloatLargeArray a, final boolean scale) { int nthread = (int) Math.min(columnsl, ConcurrencyUtils.getNumberOfThreads()); long nt = 4 * rowsl; if (columnsl == 2) { nt >>= 1; } else if (columnsl < 2) { nt >>= 2; } final long ntf = nt; final int nthreads = nthread; Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final long n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { long idx1, idx2; FloatLargeArray t = new FloatLargeArray(ntf, false); if (columnsl > 2) { if (isgn == -1) { for (long c = 4 * n0; c < columnsl; c += 4 * nthreads) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setFloat(r, a.getFloat(idx1)); t.setFloat(idx2, a.getFloat(idx1 + 1)); t.setFloat(idx2 + rowsl, a.getFloat(idx1 + 2)); t.setFloat(idx2 + 2 * rowsl, a.getFloat(idx1 + 3)); } dstRows.forward(t, 0, scale); dstRows.forward(t, rowsl, scale); dstRows.forward(t, 2 * rowsl, scale); dstRows.forward(t, 3 * rowsl, scale); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setFloat(idx1, t.getFloat(r)); a.setFloat(idx1 + 1, t.getFloat(idx2)); a.setFloat(idx1 + 2, t.getFloat(idx2 + rowsl)); a.setFloat(idx1 + 3, t.getFloat(idx2 + 2 * rowsl)); } } } else { for (long c = 4 * n0; c < columnsl; c += 4 * nthreads) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setFloat(r, a.getFloat(idx1)); t.setFloat(idx2, a.getFloat(idx1 + 1)); t.setFloat(idx2 + rowsl, a.getFloat(idx1 + 2)); t.setFloat(idx2 + 2 * rowsl, a.getFloat(idx1 + 3)); } dstRows.inverse(t, 0, scale); dstRows.inverse(t, rowsl, scale); dstRows.inverse(t, 2 * rowsl, scale); dstRows.inverse(t, 3 * rowsl, scale); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setFloat(idx1, t.getFloat(r)); a.setFloat(idx1 + 1, t.getFloat(idx2)); a.setFloat(idx1 + 2, t.getFloat(idx2 + rowsl)); a.setFloat(idx1 + 3, t.getFloat(idx2 + 2 * rowsl)); } } } } else if (columnsl == 2) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + 2 * n0; idx2 = r; t.setFloat(idx2, a.getFloat(idx1)); t.setFloat(idx2 + rowsl, a.getFloat(idx1 + 1)); } if (isgn == -1) { dstRows.forward(t, 0, scale); dstRows.forward(t, rowsl, scale); } else { dstRows.inverse(t, 0, scale); dstRows.inverse(t, rowsl, scale); } for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + 2 * n0; idx2 = r; a.setFloat(idx1, t.getFloat(idx2)); a.setFloat(idx1 + 1, t.getFloat(idx2 + rowsl)); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d_subth(final int isgn, final float[][] a, final boolean scale) { int nthread = Math.min(columns, ConcurrencyUtils.getNumberOfThreads()); int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } final int ntf = nt; final int nthreads = nthread; Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { int idx2; float[] t = new float[ntf]; if (columns > 2) { if (isgn == -1) { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); dstRows.forward(t, 2 * rows, scale); dstRows.forward(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 4 * n0; c < columns; c += 4 * nthreads) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); dstRows.inverse(t, 2 * rows, scale); dstRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx2 = r; t[idx2] = a[r][2 * n0]; t[idx2 + rows] = a[r][2 * n0 + 1]; } if (isgn == -1) { dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); } else { dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { idx2 = r; a[r][2 * n0] = t[idx2]; a[r][2 * n0 + 1] = t[idx2 + rows]; } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d0_subth(final int isgn, final float[] a, final boolean scale) { final int nthreads = ConcurrencyUtils.getNumberOfThreads() > rows ? rows : ConcurrencyUtils.getNumberOfThreads(); Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { if (isgn == -1) { for (int r = n0; r < rows; r += nthreads) { dstColumns.forward(a, r * columns, scale); } } else { for (int r = n0; r < rows; r += nthreads) { dstColumns.inverse(a, r * columns, scale); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d0_subth(final int isgn, final FloatLargeArray a, final boolean scale) { final int nthreads = (int) (ConcurrencyUtils.getNumberOfThreads() > rowsl ? rowsl : ConcurrencyUtils.getNumberOfThreads()); Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final long n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { if (isgn == -1) { for (long r = n0; r < rowsl; r += nthreads) { dstColumns.forward(a, r * columnsl, scale); } } else { for (long r = n0; r < rows; r += nthreads) { dstColumns.inverse(a, r * columnsl, scale); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d0_subth(final int isgn, final float[][] a, final boolean scale) { final int nthreads = ConcurrencyUtils.getNumberOfThreads() > rows ? rows : ConcurrencyUtils.getNumberOfThreads(); Future[] futures = new Future[nthreads]; for (int i = 0; i < nthreads; i++) { final int n0 = i; futures[i] = ConcurrencyUtils.submit(new Runnable() { public void run() { if (isgn == -1) { for (int r = n0; r < rows; r += nthreads) { dstColumns.forward(a[r], scale); } } else { for (int r = n0; r < rows; r += nthreads) { dstColumns.inverse(a[r], scale); } } } }); } ConcurrencyUtils.waitForCompletion(futures); } private void ddxt2d_sub(int isgn, float[] a, boolean scale) { int idx1, idx2; int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } float[] t = new float[nt]; if (columns > 2) { if (isgn == -1) { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); dstRows.forward(t, 2 * rows, scale); dstRows.forward(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; t[r] = a[idx1]; t[idx2] = a[idx1 + 1]; t[idx2 + rows] = a[idx1 + 2]; t[idx2 + 2 * rows] = a[idx1 + 3]; } dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); dstRows.inverse(t, 2 * rows, scale); dstRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx1 = r * columns + c; idx2 = rows + r; a[idx1] = t[r]; a[idx1 + 1] = t[idx2]; a[idx1 + 2] = t[idx2 + rows]; a[idx1 + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { idx1 = r * columns; t[r] = a[idx1]; t[rows + r] = a[idx1 + 1]; } if (isgn == -1) { dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); } else { dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { idx1 = r * columns; a[idx1] = t[r]; a[idx1 + 1] = t[rows + r]; } } } private void ddxt2d_sub(int isgn, FloatLargeArray a, boolean scale) { long idx1, idx2; long nt = 4 * rowsl; if (columnsl == 2) { nt >>= 1; } else if (columnsl < 2) { nt >>= 2; } FloatLargeArray t = new FloatLargeArray(nt, false); if (columnsl > 2) { if (isgn == -1) { for (long c = 0; c < columnsl; c += 4) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setFloat(r, a.getFloat(idx1)); t.setFloat(idx2, a.getFloat(idx1 + 1)); t.setFloat(idx2 + rowsl, a.getFloat(idx1 + 2)); t.setFloat(idx2 + 2 * rowsl, a.getFloat(idx1 + 3)); } dstRows.forward(t, 0, scale); dstRows.forward(t, rowsl, scale); dstRows.forward(t, 2 * rowsl, scale); dstRows.forward(t, 3 * rowsl, scale); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setFloat(idx1, t.getFloat(r)); a.setFloat(idx1 + 1, t.getFloat(idx2)); a.setFloat(idx1 + 2, t.getFloat(idx2 + rowsl)); a.setFloat(idx1 + 3, t.getFloat(idx2 + 2 * rowsl)); } } } else { for (long c = 0; c < columnsl; c += 4) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; t.setFloat(r, a.getFloat(idx1)); t.setFloat(idx2, a.getFloat(idx1 + 1)); t.setFloat(idx2 + rowsl, a.getFloat(idx1 + 2)); t.setFloat(idx2 + 2 * rowsl, a.getFloat(idx1 + 3)); } dstRows.inverse(t, 0, scale); dstRows.inverse(t, rowsl, scale); dstRows.inverse(t, 2 * rowsl, scale); dstRows.inverse(t, 3 * rowsl, scale); for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl + c; idx2 = rowsl + r; a.setFloat(idx1, t.getFloat(r)); a.setFloat(idx1 + 1, t.getFloat(idx2)); a.setFloat(idx1 + 2, t.getFloat(idx2 + rowsl)); a.setFloat(idx1 + 3, t.getFloat(idx2 + 2 * rowsl)); } } } } else if (columnsl == 2) { for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl; t.setFloat(r, a.getFloat(idx1)); t.setFloat(rowsl + r, a.getFloat(idx1 + 1)); } if (isgn == -1) { dstRows.forward(t, 0, scale); dstRows.forward(t, rowsl, scale); } else { dstRows.inverse(t, 0, scale); dstRows.inverse(t, rowsl, scale); } for (long r = 0; r < rowsl; r++) { idx1 = r * columnsl; a.setFloat(idx1, t.getFloat(r)); a.setFloat(idx1 + 1, t.getFloat(rowsl + r)); } } } private void ddxt2d_sub(int isgn, float[][] a, boolean scale) { int idx2; int nt = 4 * rows; if (columns == 2) { nt >>= 1; } else if (columns < 2) { nt >>= 2; } float[] t = new float[nt]; if (columns > 2) { if (isgn == -1) { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); dstRows.forward(t, 2 * rows, scale); dstRows.forward(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } else { for (int c = 0; c < columns; c += 4) { for (int r = 0; r < rows; r++) { idx2 = rows + r; t[r] = a[r][c]; t[idx2] = a[r][c + 1]; t[idx2 + rows] = a[r][c + 2]; t[idx2 + 2 * rows] = a[r][c + 3]; } dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); dstRows.inverse(t, 2 * rows, scale); dstRows.inverse(t, 3 * rows, scale); for (int r = 0; r < rows; r++) { idx2 = rows + r; a[r][c] = t[r]; a[r][c + 1] = t[idx2]; a[r][c + 2] = t[idx2 + rows]; a[r][c + 3] = t[idx2 + 2 * rows]; } } } } else if (columns == 2) { for (int r = 0; r < rows; r++) { t[r] = a[r][0]; t[rows + r] = a[r][1]; } if (isgn == -1) { dstRows.forward(t, 0, scale); dstRows.forward(t, rows, scale); } else { dstRows.inverse(t, 0, scale); dstRows.inverse(t, rows, scale); } for (int r = 0; r < rows; r++) { a[r][0] = t[r]; a[r][1] = t[rows + r]; } } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy