scala.tools.nsc.backend.jvm.opt.CopyProp.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scala-compiler Show documentation
Show all versions of scala-compiler Show documentation
Compiler for the Scala Programming Language
The newest version!
/*
* Scala (https://www.scala-lang.org)
*
* Copyright EPFL and Lightbend, Inc.
*
* Licensed under Apache License 2.0
* (http://www.apache.org/licenses/LICENSE-2.0).
*
* See the NOTICE file distributed with this work for
* additional information regarding copyright ownership.
*/
package scala.tools.nsc
package backend.jvm
package opt
import scala.annotation.{switch, tailrec}
import scala.collection.mutable
import scala.jdk.CollectionConverters._
import scala.tools.asm.Opcodes._
import scala.tools.asm.Type
import scala.tools.asm.tree._
import scala.tools.nsc.backend.jvm.BTypes.InternalName
import scala.tools.nsc.backend.jvm.analysis.BackendUtils.{LambdaMetaFactoryCall, _}
import scala.tools.nsc.backend.jvm.analysis._
import scala.tools.nsc.backend.jvm.opt.BytecodeUtils._
abstract class CopyProp {
val postProcessor: PostProcessor
import postProcessor.{backendUtils, callGraph, bTypes}
import postProcessor.bTypes.frontendAccess.compilerSettings
import backendUtils._
/**
* For every `xLOAD n`, find all local variable slots that are aliases of `n` using an
* AliasingAnalyzer and change the instruction to `xLOAD m` where `m` is the smallest alias.
* This leaves behind potentially stale `xSTORE n` instructions, which are then eliminated
* by [[eliminateStaleStoresAndRewriteSomeIntrinsics]].
*/
def copyPropagation(method: MethodNode, owner: InternalName): Boolean = {
AsmAnalyzer.sizeOKForAliasing(method) && {
var changed = false
val numParams = parametersSize(method)
lazy val aliasAnalysis = new BasicAliasingAnalyzer(method, owner)
// Remember locals that are used in a `LOAD` instruction. Assume a program has two LOADs:
//
// ...
// LOAD 3 // aliases of 3 here: <3>
// ...
// LOAD 1 // aliases of 1 here: <1, 3>
//
// In this example, we should change the second load from 1 to 3, which might render the
// local variable 1 unused.
val knownUsed = new Array[Boolean](BackendUtils.maxLocals(method))
def usedOrMinAlias(it: IntIterator, init: Int): Int = {
if (knownUsed(init)) init
else {
var r = init
while (it.hasNext) {
val n = it.next()
// knownUsed.length is the number of locals, `n` may be a stack slot
if (n < knownUsed.length && knownUsed(n)) return n
if (n < r) r = n
}
r
}
}
val it = method.instructions.iterator
while (it.hasNext) it.next() match {
case vi: VarInsnNode if vi.`var` >= numParams && isLoad(vi) =>
val aliases = aliasAnalysis.frameAt(vi).asInstanceOf[AliasingFrame[_]].aliasesOf(vi.`var`)
if (aliases.size > 1) {
val alias = usedOrMinAlias(aliases.iterator, vi.`var`)
if (alias != -1) {
changed = true
vi.`var` = alias
}
}
knownUsed(vi.`var`) = true
case _ =>
}
changed
}
}
/**
* Eliminate `xSTORE` instructions that have no consumer. If the instruction can be completely
* eliminated, it is replaced by a POP. The [[eliminatePushPop]] cleans up unnecessary POPs.
*
* Also rewrites some intrinsics (done here because a ProdCons analysis is available):
* - `ClassTag(classOf[X]).newArray` is rewritten to `new Array[X]`
*
* Finally there's an interesting special case that complements the inliner heuristics. After
* the rewrite above, if the `new Array[X]` is used in a `ScalaRuntime.array_apply/update` call,
* inline that method. These methods have a big pattern match for all primitive array types, and
* we only inline them if we statically know the array type. In this case, all the non-matching
* branches are later eliminated by `eliminateRedundantCastsAndRewriteSomeIntrinsics`.
*
* Note that an `ASOTRE` can not always be eliminated: it removes a reference to the object that
* is currently stored in that local, which potentially frees it for GC (scala/bug#5313). Therefore
* we replace such stores by `POP; ACONST_NULL; ASTORE x` - except if the store precedes an
* `xRETURN`, in which case it can be removed.
*
* Returns (staleStoreRemoved, intrinsicRewritten, callInlined).
*/
def eliminateStaleStoresAndRewriteSomeIntrinsics(method: MethodNode, owner: InternalName): (Boolean, Boolean, Boolean) = {
if (!AsmAnalyzer.sizeOKForSourceValue(method)) (false, false, false) else {
lazy val prodCons = new ProdConsAnalyzer(method, owner)
def hasNoCons(varIns: AbstractInsnNode, slot: Int) = prodCons.consumersOfValueAt(varIns.getNext, slot).isEmpty
def popFor(vi: VarInsnNode): AbstractInsnNode = getPop(if (isSize2LoadOrStore(vi.getOpcode)) 2 else 1)
// ASTORE insn that have no consumer.
// - if the local is not live, the store is replaced by POP
// - otherwise, pop the argument value and store NULL instead. Unless the boolean field is
// `true`: then the store argument is already known to be ACONST_NULL.
val toNullOut = mutable.Map.empty[VarInsnNode, Boolean]
val toReplace = mutable.Map.empty[AbstractInsnNode, List[AbstractInsnNode]]
val returns = mutable.Set.empty[AbstractInsnNode]
val toInline = mutable.Set.empty[MethodInsnNode]
// `true` for variables that are known to be live and hold non-primitives
val liveRefVars = new Array[Boolean](BackendUtils.maxLocals(method))
val firstLocalIndex = parametersSize(method)
val it = method.instructions.iterator
while (it.hasNext) it.next() match {
case vi: VarInsnNode if isStore(vi) && hasNoCons(vi, vi.`var`) =>
val canElim = vi.getOpcode != ASTORE || {
val currentFieldValueProds = prodCons.initialProducersForValueAt(vi, vi.`var`)
currentFieldValueProds.size == 1 && (currentFieldValueProds.head match {
case ParameterProducer(0) => !isStaticMethod(method) // current field value is `this`, which won't be gc'd anyway
case _: UninitializedLocalProducer => true // field is not yet initialized, so current value cannot leak
case _ => false
})
}
if (canElim) toReplace(vi) = List(popFor(vi))
else {
val prods = prodCons.producersForValueAt(vi, prodCons.frameAt(vi).stackTop)
val isStoreNull = prods.size == 1 && prods.head.getOpcode == ACONST_NULL
toNullOut(vi) = isStoreNull
}
case ii: IincInsnNode if hasNoCons(ii, ii.`var`) =>
toReplace(ii) = Nil
case vi: VarInsnNode =>
val opc = vi.getOpcode
val markAsLive = opc == ALOAD || opc == ASTORE && (
// a store makes the variable live if it's a parameter, or if a non-null value if stored
vi.`var` < firstLocalIndex || prodCons.initialProducersForInputsOf(vi).exists(_.getOpcode != ACONST_NULL)
)
if (markAsLive)
liveRefVars(vi.`var`) = true
case mi: MethodInsnNode =>
// rewrite `ClassTag(classOf[X]).newArray` to `new Array[X]`
val newArrayCls = BackendUtils.classTagNewArrayArg(mi, prodCons)
if (newArrayCls != null) {
val receiverProds = prodCons.producersForValueAt(mi, prodCons.frameAt(mi).stackTop - 1)
if (receiverProds.size == 1) {
toReplace(receiverProds.head) = List(receiverProds.head, getPop(1))
toReplace(mi) = List(new TypeInsnNode(ANEWARRAY, newArrayCls))
toInline ++= prodCons.ultimateConsumersOfOutputsFrom(mi).collect({case i if isRuntimeArrayLoadOrUpdate(i) => i.asInstanceOf[MethodInsnNode]})
}
}
case insn =>
if (isReturn(insn)) returns += insn
}
def isTrailing(insn: AbstractInsnNode) = insn != null && {
import scala.tools.asm.tree.AbstractInsnNode._
insn.getType match {
case METHOD_INSN | INVOKE_DYNAMIC_INSN | JUMP_INSN | TABLESWITCH_INSN | LOOKUPSWITCH_INSN => false
case _ => true
}
}
// stale stores that precede a return can be removed, there's no need to null them out. the
// references are released for gc when the method returns. this also cleans up unnecessary
// `ACONST_NULL; ASTORE x` created by the inliner (for locals of the inlined method).
for (ret <- returns) {
var i = ret
while (isTrailing(i)) {
if (i.getType == AbstractInsnNode.VAR_INSN) {
val vi = i.asInstanceOf[VarInsnNode]
if (toNullOut.remove(vi).nonEmpty)
toReplace(vi) = List(popFor(vi))
}
i = i.getPrevious
}
}
var staleStoreRemoved = toNullOut.nonEmpty
var intrinsicRewritten = false
val callInlined = toInline.nonEmpty
for ((i, nis) <- toReplace) {
i.getType match {
case AbstractInsnNode.VAR_INSN | AbstractInsnNode.IINC_INSN => staleStoreRemoved = true
case AbstractInsnNode.METHOD_INSN => intrinsicRewritten = true
case _ =>
}
// the original instruction `i` may appear (once) in `nis`.
var insertBefore = i
var insertAfter: AbstractInsnNode = null
for (ni <- nis) {
if (ni eq i) {
insertBefore = null
insertAfter = i
} else if (insertBefore != null)
method.instructions.insertBefore(insertBefore, ni)
else {
method.instructions.insert(insertAfter, ni)
insertAfter = ni
}
}
if (insertBefore != null)
method.instructions.remove(i)
}
for ((vi, isStoreNull) <- toNullOut) {
if (!liveRefVars(vi.`var`)) method.instructions.set(vi, popFor(vi)) // can drop `ASTORE x` where x has only dead stores
else {
if (!isStoreNull) {
val prev = vi.getPrevious
method.instructions.insert(prev, new InsnNode(ACONST_NULL))
method.instructions.insert(prev, getPop(1))
}
}
}
if (toInline.nonEmpty) {
import postProcessor._
val methodCallsites = callGraph.callsites(method)
var css = toInline.flatMap(methodCallsites.get).toList.sorted(inliner.callsiteOrdering)
while (css.nonEmpty) {
val cs = css.head
css = css.tail
inliner.inlineCallsite(cs, None, updateCallGraph = css.isEmpty)
}
}
(staleStoreRemoved, intrinsicRewritten, callInlined)
}
}
/**
* When a POP instruction has a single producer, remove the POP and eliminate the producer by
* bubbling up the POPs. For example, given
* ILOAD 1; ILOAD 2; IADD; POP
* we first eliminate the POP, then the IADD, then its inputs, so the entire sequence goes away.
* If a producer cannot be eliminated (need to keep side-effects), a POP is inserted.
*
* A special case eliminates the creation of unused objects with side-effect-free constructors:
* NEW scala/Tuple1; DUP; ALOAD 0; INVOKESPECIAL scala/Tuple1.; POP
* The POP has a single producer (the DUP), it's easy to eliminate these two. A special case
* is needed to eliminate the INVOKESPECIAL and NEW.
*
* Returns (pushPopChanged, castAdded, nullCheckAdded)
*/
def eliminatePushPop(method: MethodNode, owner: InternalName): (Boolean, Boolean, Boolean) = {
if (!AsmAnalyzer.sizeOKForSourceValue(method)) (false, false, false) else {
// A queue of instructions producing a value that has to be eliminated. If possible, the
// instruction (and its inputs) will be removed, otherwise a POP is inserted after
val queue = mutable.Queue.empty[ProducedValue]
// Contains constructor invocations for values that can be eliminated if unused.
val sideEffectFreeConstructorCalls = mutable.ArrayBuffer.empty[MethodInsnNode]
// instructions to remove (we don't change the bytecode while analyzing it. this allows
// running the ProdConsAnalyzer only once.)
val toRemove = mutable.Set.empty[AbstractInsnNode]
// instructions to insert before some instruction
val toInsertBefore = mutable.Map.empty[AbstractInsnNode, List[AbstractInsnNode]]
// an instruction to insert after some instruction
val toInsertAfter = mutable.Map.empty[AbstractInsnNode, AbstractInsnNode]
var castAdded = false
var nullCheckAdded = false
lazy val prodCons = new ProdConsAnalyzer(method, owner)
/**
* Returns the producers for the stack value `inputSlot` consumed by `cons`, if the consumer
* instruction is the only consumer for all of these producers.
*
* If a producer has multiple consumers, or the value is the caught exception in a catch
* block, this method returns Set.empty.
*/
def producersIfSingleConsumer(cons: AbstractInsnNode, inputSlot: Int): Set[AbstractInsnNode] = {
/**
* True if the values produced by `prod` are all the same. Most instructions produce a single
* value. DUP and DUP2 (with a size-2 input) produce two equivalent values. However, there
* are some exotic instructions that produce multiple non-equal values (DUP_X1, SWAP, ...).
*
* Assume we have `DUP_X2; POP`. In order to remove the `POP` we need to change the DUP_X2
* into something else, which is not straightforward.
*
* Since scalac never emits any of those exotic bytecodes, we don't optimize them.
*/
def producerHasSingleOutput(prod: AbstractInsnNode): Boolean = prod match {
case _: ExceptionProducer[_] | _: UninitializedLocalProducer =>
// POP of an exception in a catch block cannot be removed. For an uninitialized local,
// there should not be a consumer. We are conservative and include it here, so the
// producer would not be removed.
false
case _: ParameterProducer =>
true
case _ => (prod.getOpcode: @switch) match {
case DUP => true
case DUP2 => prodCons.frameAt(prod).peekStack(0).getSize == 2
case _ => InstructionStackEffect.prod(InstructionStackEffect.forAsmAnalysis(prod, prodCons.frameAt(prod))) == 1
}
}
val prods = prodCons.producersForValueAt(cons, inputSlot)
val singleConsumer = prods forall { prod =>
producerHasSingleOutput(prod) && {
// for DUP / DUP2, we only consider the value that is actually consumed by cons
val conss = prodCons.consumersOfValueAt(prod.getNext, inputSlot)
conss.size == 1 && conss.head == cons
}
}
if (singleConsumer) prods else Set.empty
}
/**
* For a POP instruction that is the single consumer of its producers, remove the POP and
* enqueue the producers.
*/
def handleInitialPop(pop: AbstractInsnNode): Unit = {
val prods = producersIfSingleConsumer(pop, prodCons.frameAt(pop).stackTop)
if (prods.nonEmpty) {
toRemove += pop
val size = if (pop.getOpcode == POP2) 2 else 1
queue ++= prods.map(ProducedValue(_, size))
}
}
/**
* Traverse the method in its initial state and collect all POP instructions and side-effect
* free constructor invocations that can be eliminated.
*/
def collectInitialPopsAndPureConstrs(): Unit = {
val it = method.instructions.iterator
while (it.hasNext) {
val insn = it.next()
(insn.getOpcode: @switch) match {
case POP | POP2 =>
handleInitialPop(insn)
case INVOKESPECIAL =>
val mi = insn.asInstanceOf[MethodInsnNode]
if (isSideEffectFreeConstructorCall(mi)) sideEffectFreeConstructorCalls += mi
case _ =>
}
}
}
/**
* Eliminate the `numArgs` inputs of the instruction `prod` (which was eliminated). For
* each input value
* - if the `prod` instruction is the single consumer, enqueue the producers of the input
* - otherwise, insert a POP instruction to POP the input value
*/
def handleInputs(prod: AbstractInsnNode, numArgs: Int): Unit = {
val frame = prodCons.frameAt(prod)
val pops = mutable.ListBuffer.empty[InsnNode]
@tailrec def handle(stackOffset: Int): Unit = {
if (stackOffset >= 0) {
val prods = producersIfSingleConsumer(prod, frame.stackTop - stackOffset)
val nSize = frame.peekStack(stackOffset).getSize
if (prods.isEmpty) pops += getPop(nSize)
else queue ++= prods.map(ProducedValue(_, nSize))
handle(stackOffset - 1)
}
}
handle(numArgs - 1) // handle stack offsets (numArgs - 1) to 0
if (pops.nonEmpty) toInsertBefore(prod) = pops.toList
}
/**
* Eliminate LMF `indy` and its inputs.
*/
def handleClosureInst(indy: InvokeDynamicInsnNode): Unit = {
toRemove += indy
callGraph.removeClosureInstantiation(indy, method)
removeIndyLambdaImplMethod(owner, method, indy)
handleInputs(indy, Type.getArgumentTypes(indy.desc).length)
}
def runQueue(): Unit = while (queue.nonEmpty) {
val ProducedValue(prod, size) = queue.dequeue()
def prodString = s"Producer ${AsmUtils textify prod}@${method.instructions.indexOf(prod)}\n${AsmUtils textify method}"
def popAfterProd(): Unit = toInsertAfter(prod) = getPop(size)
(prod.getOpcode: @switch) match {
case ACONST_NULL | ICONST_M1 | ICONST_0 | ICONST_1 | ICONST_2 | ICONST_3 | ICONST_4 | ICONST_5 | LCONST_0 | LCONST_1 | FCONST_0 | FCONST_1 | FCONST_2 | DCONST_0 | DCONST_1 |
BIPUSH | SIPUSH | ILOAD | LLOAD | FLOAD | DLOAD | ALOAD=>
toRemove += prod
case opc @ (DUP | DUP2) =>
assert(opc != 2 || size == 2, s"DUP2 for two size-1 values; $prodString") // ensured in method `producerHasSingleOutput`
if (toRemove(prod))
// the DUP is already scheduled for removal because one of its consumers is a POP.
// now the second consumer is also a POP, so we need to eliminate the DUP's input.
handleInputs(prod, 1)
else
toRemove += prod
case DUP_X1 | DUP_X2 | DUP2_X1 | DUP2_X2 | SWAP =>
// these are excluded in method `producerHasSingleOutput`
assert(false, s"Cannot eliminate value pushed by an instruction with multiple output values; $prodString")
case IDIV | LDIV | IREM | LREM =>
popAfterProd() // keep potential division by zero
case IADD | LADD | FADD | DADD | ISUB | LSUB | FSUB | DSUB | IMUL | LMUL | FMUL | DMUL | FDIV | DDIV | FREM | DREM |
LSHL | LSHR | LUSHR |
IAND | IOR | IXOR | LAND | LOR | LXOR |
LCMP | FCMPL | FCMPG | DCMPL | DCMPG =>
toRemove += prod
handleInputs(prod, 2)
case INEG | LNEG | FNEG | DNEG |
I2L | I2F | I2D | L2I | L2F | L2D | F2I | F2L | F2D | D2I | D2L | D2F | I2B | I2C | I2S =>
toRemove += prod
handleInputs(prod, 1)
case GETFIELD | GETSTATIC =>
if (isBoxedUnit(prod) || isModuleLoad(prod, modulesAllowSkipInitialization)) toRemove += prod
else popAfterProd() // keep potential class initialization (static field) or NPE (instance field)
case INVOKEVIRTUAL | INVOKESPECIAL | INVOKESTATIC | INVOKEINTERFACE =>
val methodInsn = prod.asInstanceOf[MethodInsnNode]
if (isSideEffectFreeCall(methodInsn)) {
toRemove += prod
callGraph.removeCallsite(methodInsn, method)
val receiver = if (methodInsn.getOpcode == INVOKESTATIC) 0 else 1
handleInputs(prod, Type.getArgumentTypes(methodInsn.desc).length + receiver)
} else if (isScalaUnbox(methodInsn)) {
val tp = primitiveAsmTypeToBType(Type.getReturnType(methodInsn.desc))
val boxTp = bTypes.coreBTypes.boxedClassOfPrimitive(tp)
toInsertBefore(methodInsn) = List(new TypeInsnNode(CHECKCAST, boxTp.internalName), new InsnNode(POP))
toRemove += prod
callGraph.removeCallsite(methodInsn, method)
castAdded = true
} else if (isJavaUnbox(methodInsn)) {
val nullCheck = mutable.ListBuffer.empty[AbstractInsnNode]
val nonNullLabel = newLabelNode
nullCheck += new JumpInsnNode(IFNONNULL, nonNullLabel)
nullCheck += new InsnNode(ACONST_NULL)
nullCheck += new InsnNode(ATHROW)
nullCheck += nonNullLabel
toInsertBefore(methodInsn) = nullCheck.toList
toRemove += prod
callGraph.removeCallsite(methodInsn, method)
method.maxStack = math.max(BackendUtils.maxStack(method), prodCons.frameAt(methodInsn).getStackSize + 1)
nullCheckAdded = true
} else
popAfterProd()
case INVOKEDYNAMIC =>
prod match {
case LambdaMetaFactoryCall(indy, _, _, _, _) => handleClosureInst(indy)
case _ => popAfterProd()
}
case NEW =>
if (isNewForSideEffectFreeConstructor(prod)) toRemove += prod
else popAfterProd()
case LDC =>
prod.asInstanceOf[LdcInsnNode].cst match {
case _: java.lang.Integer | _: java.lang.Float | _: java.lang.Long | _: java.lang.Double | _: String =>
toRemove += prod
case _ =>
if (compilerSettings.optAllowSkipClassLoading) toRemove += prod
else popAfterProd()
}
case MULTIANEWARRAY =>
toRemove += prod
handleInputs(prod, prod.asInstanceOf[MultiANewArrayInsnNode].dims)
case _ =>
popAfterProd()
}
}
// there are two cases when we can eliminate a constructor call:
// - NEW T; INVOKESPECIAL T. -- there's no DUP, the new object is consumed only by the constructor)
// - NEW T; DUP; INVOKESPECIAL T., where the DUP will be removed
def eliminateUnusedPureConstructorCalls(): Boolean = {
var changed = false
def removeConstructorCall(mi: MethodInsnNode): Unit = {
toRemove += mi
callGraph.removeCallsite(mi, method)
sideEffectFreeConstructorCalls -= mi
changed = true
}
for (mi <- sideEffectFreeConstructorCalls.toList) { // toList to allow removing elements while traversing
val frame = prodCons.frameAt(mi)
val stackTop = frame.stackTop
val numArgs = Type.getArgumentTypes(mi.desc).length
val receiverProds = producersIfSingleConsumer(mi, stackTop - numArgs)
if (receiverProds.size == 1) {
val receiverProd = receiverProds.head
if (receiverProd.getOpcode == NEW) {
removeConstructorCall(mi)
handleInputs(mi, numArgs + 1) // removes the producers of args and receiver
} else if (receiverProd.getOpcode == DUP && toRemove.contains(receiverProd)) {
val dupProds = producersIfSingleConsumer(receiverProd, prodCons.frameAt(receiverProd).stackTop)
if (dupProds.size == 1 && dupProds.head.getOpcode == NEW) {
removeConstructorCall(mi)
handleInputs(mi, numArgs) // removes the producers of args. the producer of the receiver is DUP and already in toRemove.
queue += ProducedValue(dupProds.head, 1) // removes the NEW (which is NOT the producer of the receiver!)
}
}
}
}
changed
}
collectInitialPopsAndPureConstrs()
// eliminating producers enables eliminating unused constructor calls (when a DUP gets removed).
// vice-versa, eliminating a constructor call adds producers of constructor parameters to the queue.
// so the two run in a loop.
runQueue()
while (eliminateUnusedPureConstructorCalls())
runQueue()
var changed = false
toInsertAfter foreach {
case (target, insn) =>
nextExecutableInstructionOrLabel(target) match {
case Some(next) if insn.getType == AbstractInsnNode.INSN && next.getOpcode == insn.getOpcode && toRemove(next) =>
// Inserting and removing a POP at the same place should not enable `changed`. This happens
// when a POP directly follows a producer that cannot be eliminated, e.g. INVOKESTATIC A.m ()I; POP
// The POP is initially added to `toRemove`, and the `INVOKESTATIC` producer is added to the queue.
// Because the producer cannot be elided, a POP is added to `toInsertAfter`.
toRemove -= next
case _ =>
changed = true
method.instructions.insert(target, insn)
}
}
toInsertBefore foreach {
case (target, insns) =>
changed = true
insns.foreach(method.instructions.insertBefore(target, _))
}
toRemove foreach { insn =>
changed = true
method.instructions.remove(insn)
}
(changed, castAdded, nullCheckAdded)
}
}
case class ProducedValue(producer: AbstractInsnNode, size: Int) {
override def toString = s"<${AsmUtils textify producer}>"
}
/**
* Remove `xSTORE n; xLOAD n` pairs if
* - the local variable n is not used anywhere else in the method (1), and
* - there are no executable instructions and no live labels (jump targets) between the two (2)
*
* Note: store-load pairs that cannot be eliminated could be replaced by `DUP; xSTORE n`, but
* that's just cosmetic and doesn't help for anything.
*
* (1) This could be made more precise by running a prodCons analysis and checking that the load
* is the only user of the store. Then we could eliminate the pair even if the variable is live
* (except for ASTORE, scala/bug#5313). Not needing an analyzer is more efficient, and catches most
* cases.
*
* (2) The implementation uses a conservative estimation for liveness (if some instruction uses
* local n, then n is considered live in the entire method). In return, it doesn't need to run an
* Analyzer on the method, making it more efficient.
*
* This method also removes `ACONST_NULL; ASTORE n` if the local n is not live. This pattern is
* introduced by [[eliminateStaleStoresAndRewriteSomeIntrinsics]].
*
* The implementation is a little tricky to support the following case:
* ISTORE 1; ISTORE 2; ILOAD 2; ACONST_NULL; ASTORE 3; ILOAD 1
* The outer store-load pair can be removed if two the inner pairs can be.
*/
def eliminateStoreLoad(method: MethodNode): Boolean = {
// TODO: use copyProp once we have cached analyses? or is the analysis invalidated anyway because instructions are deleted / changed?
// if we cache them anyway, we can use an analysis if it exists in the cache, and skip otherwise.
val removePairs = mutable.Set.empty[RemovePair]
val liveVars = new Array[Boolean](BackendUtils.maxLocals(method))
val liveLabels = mutable.Set.empty[LabelNode]
def mkRemovePair(store: VarInsnNode, other: AbstractInsnNode, depends: List[RemovePairDependency]): RemovePair = {
val r = RemovePair(store, other, depends)
removePairs += r
r
}
def registerLiveVarsLabels(insn: AbstractInsnNode): Unit = insn match {
case vi: VarInsnNode => liveVars(vi.`var`) = true
case ii: IincInsnNode => liveVars(ii.`var`) = true
case j: JumpInsnNode => liveLabels += j.label
case s: TableSwitchInsnNode => liveLabels += s.dflt; liveLabels ++= s.labels.asScala
case s: LookupSwitchInsnNode => liveLabels += s.dflt; liveLabels ++= s.labels.asScala
case _ =>
}
val pairStartStack = new mutable.Stack[(AbstractInsnNode, mutable.ListBuffer[RemovePairDependency])]
def push(insn: AbstractInsnNode) = {
pairStartStack push ((insn, mutable.ListBuffer.empty))
}
def addDepends(dependency: RemovePairDependency) = if (pairStartStack.nonEmpty) {
val (_, depends) = pairStartStack.top
depends += dependency
}
def completesStackTop(load: AbstractInsnNode) = isLoad(load) && pairStartStack.nonEmpty && {
pairStartStack.top match {
case (store: VarInsnNode, _) => store.`var` == load.asInstanceOf[VarInsnNode].`var`
case _ => false
}
}
/**
* Try to pair `insn` with its correspondent on the stack
* - if the stack top is a store and `insn` is a corresponding load, create a pair
* - otherwise, check the two top stack values for `null; store`. if it matches, create
* a pair and continue pairing `insn` on the remaining stack
* - otherwise, empty the stack and mark the local variables in it live
*/
def tryToPairInstruction(insn: AbstractInsnNode): Unit = {
@tailrec def emptyStack(): Unit = if (pairStartStack.nonEmpty) {
registerLiveVarsLabels(pairStartStack.pop()._1)
emptyStack()
}
@tailrec def tryPairing(): Unit = {
if (completesStackTop(insn)) {
val (store: VarInsnNode, depends) = pairStartStack.pop()
addDepends(mkRemovePair(store, insn, depends.toList))
} else if (pairStartStack.nonEmpty) {
val (top, topDepends) = pairStartStack.pop()
if (pairStartStack.nonEmpty) {
(pairStartStack.top, top) match {
case ((ldNull: InsnNode, depends), store: VarInsnNode) if ldNull.getOpcode == ACONST_NULL && store.getOpcode == ASTORE =>
pairStartStack.pop()
addDepends(mkRemovePair(store, ldNull, depends.toList))
// example: store; (null; store;) (store; load;) load
// s1^ ^^^^^p1^^^^^ // p1 is added to s1's depends
// then: store; (null; store;) load
// s2^ ^^^^p2^^^^^ // p1 and p2 are added to s2's depends
topDepends foreach addDepends
tryPairing()
case _ =>
// empty the stack - a non-matching insn was found, cannot create any pairs to remove
registerLiveVarsLabels(insn)
registerLiveVarsLabels(top)
emptyStack()
}
} else {
// stack only has one element
registerLiveVarsLabels(insn)
registerLiveVarsLabels(top)
}
} else {
// stack is empty already
registerLiveVarsLabels(insn)
}
}
tryPairing()
}
var insn = method.instructions.getFirst
@tailrec def advanceToNextExecutableOrLabel(): Unit = {
insn = insn.getNext
if (insn != null && !isExecutable(insn) && !insn.isInstanceOf[LabelNode]) advanceToNextExecutableOrLabel()
}
while (insn != null) {
insn match {
case _ if insn.getOpcode == ACONST_NULL => push(insn)
case vi: VarInsnNode if isStore(vi) => push(insn)
case label: LabelNode if pairStartStack.nonEmpty => addDepends(LabelNotLive(label))
case _ => tryToPairInstruction(insn)
}
advanceToNextExecutableOrLabel()
}
// elide RemovePairs that depend on live labels or other RemovePair that have to be elided.
// example: store 1; store 2; label x; load 2; load 1
// if x is live, the inner pair has to be elided, causing the outer pair to be elided too.
var doneEliding = false
def elide(removePair: RemovePair) = {
doneEliding = false
liveVars(removePair.store.`var`) = true
removePairs -= removePair
}
while (!doneEliding) {
doneEliding = true
for (removePair <- removePairs.toList) {
val slot = removePair.store.`var`
if (liveVars(slot)) elide(removePair)
else removePair.depends foreach {
case LabelNotLive(label) => if (liveLabels(label)) elide(removePair)
case other: RemovePair => if (!removePairs(other)) elide(removePair)
}
}
}
for (removePair <- removePairs) {
method.instructions.remove(removePair.store)
method.instructions.remove(removePair.other)
}
val changed = removePairs.nonEmpty
changed
}
}
trait RemovePairDependency
case class RemovePair(store: VarInsnNode, other: AbstractInsnNode, depends: List[RemovePairDependency]) extends RemovePairDependency {
override def toString = s"<${AsmUtils textify store},${AsmUtils textify other}> [$depends]"
}
case class LabelNotLive(label: LabelNode) extends RemovePairDependency
© 2015 - 2024 Weber Informatics LLC | Privacy Policy