
scala.tools.nsc.transform.Erasure.scala Maven / Gradle / Ivy
/*
* Scala (https://www.scala-lang.org)
*
* Copyright EPFL and Lightbend, Inc.
*
* Licensed under Apache License 2.0
* (http://www.apache.org/licenses/LICENSE-2.0).
*
* See the NOTICE file distributed with this work for
* additional information regarding copyright ownership.
*/
package scala.tools.nsc
package transform
import scala.annotation.tailrec
import scala.reflect.internal.ClassfileConstants._
import scala.collection.{ mutable, immutable }
import symtab._
import Flags._
import scala.reflect.internal.Mode._
abstract class Erasure extends InfoTransform
with scala.reflect.internal.transform.Erasure
with typechecker.Analyzer
with TypingTransformers
with ast.TreeDSL
with TypeAdaptingTransformer
{
import global._
import definitions._
import CODE._
val phaseName: String = "erasure"
val requiredDirectInterfaces = perRunCaches.newAnyRefMap[Symbol, mutable.Set[Symbol]]()
def newTransformer(unit: CompilationUnit): Transformer =
new ErasureTransformer(unit)
override def keepsTypeParams = false
// -------- erasure on types --------------------------------------------------------
// convert a numeric with a toXXX method
def numericConversion(tree: Tree, numericSym: Symbol): Tree = {
val mname = newTermName("to" + numericSym.name)
val conversion = tree.tpe member mname
assert(conversion != NoSymbol, s"$tree => $numericSym")
atPos(tree.pos)(Apply(Select(tree, conversion), Nil))
}
private object NeedsSigCollector {
private val NeedsSigCollector_true = new NeedsSigCollector(true)
private val NeedsSigCollector_false = new NeedsSigCollector(false)
def apply(isClassConstructor: Boolean) = if (isClassConstructor) NeedsSigCollector_true else NeedsSigCollector_false
}
private class NeedsSigCollector(isClassConstructor: Boolean) extends TypeCollector(false) {
def apply(tp: Type): Unit =
if (!result) {
tp match {
case st: SubType =>
apply(st.supertype)
case TypeRef(pre, sym, args) =>
if (sym == ArrayClass) untilApply(args)
else if (sym.isTypeParameterOrSkolem || sym.isExistentiallyBound || !args.isEmpty) result = true
else if (sym.isClass) apply(rebindInnerClass(pre, sym)) // #2585
else if (!sym.isTopLevel) apply(pre)
case PolyType(_, _) | ExistentialType(_, _) => result = true
case RefinedType(parents, _) =>
untilApply(parents)
case ClassInfoType(parents, _, _) =>
untilApply(parents)
case AnnotatedType(_, atp) =>
apply(atp)
case MethodType(params, resultType) =>
if (isClassConstructor) {
val sigParams = params match {
case head :: tail if head.isOuterParam => tail
case _ => params
}
this.foldOver(sigParams)
// skip the result type, it is Void in the signature.
} else {
tp.foldOver(this)
}
case _ =>
tp.foldOver(this)
}
}
@tailrec
private[this] def untilApply(ts: List[Type]): Unit =
if (! ts.isEmpty && ! result) { apply(ts.head) ; untilApply(ts.tail) }
}
override protected def verifyJavaErasure = settings.Xverify || settings.debug
private def needsJavaSig(sym: Symbol, tp: Type, throwsArgs: List[Type]) = !settings.Ynogenericsig && {
def needs(tp: Type) = NeedsSigCollector(sym.isClassConstructor).collect(tp)
needs(tp) || throwsArgs.exists(needs)
}
// only refer to type params that will actually make it into the sig, this excludes:
// * higher-order type parameters
// * type parameters appearing in method parameters
// * type members not visible in an enclosing template
private def isTypeParameterInSig(sym: Symbol, initialSymbol: Symbol) = (
!sym.isHigherOrderTypeParameter &&
sym.isTypeParameterOrSkolem && (
(initialSymbol.isMethod && initialSymbol.typeParams.contains(sym)) ||
(initialSymbol.ownersIterator.exists(encl => encl.isClass && !encl.hasPackageFlag && sym.isNestedIn(encl)))
)
)
/** This object is only used for sanity testing when -check:genjvm is set.
* In that case we make sure that the erasure of the `normalized` type
* is the same as the erased type that's generated. Normalization means
* unboxing some primitive types and further simplifications as they are done in jsig.
*/
val prepareSigMap = new TypeMap {
def squashBoxed(tp: Type): Type = tp.dealiasWiden match {
case t @ RefinedType(parents, decls) =>
val parents1 = parents mapConserve squashBoxed
if (parents1 eq parents) tp
else RefinedType(parents1, decls)
case t @ ExistentialType(tparams, tpe) =>
val tpe1 = squashBoxed(tpe)
if (tpe1 eq tpe) t
else ExistentialType(tparams, tpe1)
case t =>
if (boxedClass contains t.typeSymbol) ObjectTpe
else tp
}
def apply(tp: Type): Type = tp.dealiasWiden match {
case tp1 @ TypeBounds(lo, hi) =>
val lo1 = squashBoxed(apply(lo))
val hi1 = squashBoxed(apply(hi))
if ((lo1 eq lo) && (hi1 eq hi)) tp1
else TypeBounds(lo1, hi1)
case tp1 @ TypeRef(pre, sym, args) =>
def argApply(tp: Type) = {
val tp1 = apply(tp)
if (tp1.typeSymbol == UnitClass) ObjectTpe
else squashBoxed(tp1)
}
if (sym == ArrayClass && args.nonEmpty)
if (unboundedGenericArrayLevel(tp1) == 1) ObjectTpe
else mapOver(tp1)
else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
ObjectTpe
else if (sym == UnitClass)
BoxedUnitTpe
else if (sym == NothingClass)
RuntimeNothingClass.tpe
else if (sym == NullClass)
RuntimeNullClass.tpe
else {
val pre1 = apply(pre)
val args1 = args mapConserve argApply
if ((pre1 eq pre) && (args1 eq args)) tp1
else TypeRef(pre1, sym, args1)
}
case tp1 @ MethodType(params, restpe) =>
val params1 = mapOver(params)
val restpe1 = if (restpe.typeSymbol == UnitClass) UnitTpe else apply(restpe)
if ((params1 eq params) && (restpe1 eq restpe)) tp1
else MethodType(params1, restpe1)
case tp1 @ RefinedType(parents, decls) =>
val parents1 = parents mapConserve apply
if (parents1 eq parents) tp1
else RefinedType(parents1, decls)
case t @ ExistentialType(tparams, tpe) =>
val tpe1 = apply(tpe)
if (tpe1 eq tpe) t
else ExistentialType(tparams, tpe1)
case tp1: ClassInfoType =>
tp1
case tp1 =>
mapOver(tp1)
}
}
private def hiBounds(bounds: TypeBounds): List[Type] = bounds.hi.dealiasWiden match {
case RefinedType(parents, _) => parents map (_.dealiasWiden)
case tp => tp :: Nil
}
private def isErasedValueType(tpe: Type) = tpe.isInstanceOf[ErasedValueType]
/* Drop redundant types (ones which are implemented by some other parent) from the immediate parents.
* This is important on Android because there is otherwise an interface explosion.
*/
def minimizeParents(cls: Symbol, parents: List[Type]): List[Type] = if (parents.isEmpty) parents else {
val requiredDirect: Symbol => Boolean = requiredDirectInterfaces.getOrElse(cls, Set.empty)
var rest = parents.tail
var leaves = collection.mutable.ListBuffer.empty[Type] += parents.head
while (rest.nonEmpty) {
val candidate = rest.head
val candidateSym = candidate.typeSymbol
val required = requiredDirect(candidateSym) || !leaves.exists(t => t.typeSymbol isSubClass candidateSym)
if (required) {
leaves = leaves filter { t =>
val ts = t.typeSymbol
requiredDirect(ts) || !ts.isTraitOrInterface || !candidateSym.isSubClass(ts)
}
leaves += candidate
}
rest = rest.tail
}
leaves.toList
}
/** The Java signature of type 'info', for symbol sym. The symbol is used to give the right return
* type for constructors.
*/
final def javaSig(sym0: Symbol, info: Type, markClassUsed: Symbol => Unit): Option[String] = enteringErasure { javaSig0(sym0, info, markClassUsed) }
@noinline
private final def javaSig0(sym0: Symbol, info: Type, markClassUsed: Symbol => Unit): Option[String] = {
val builder = new java.lang.StringBuilder(64)
val isTraitSignature = sym0.enclClass.isTrait
def superSig(cls: Symbol, parents: List[Type]): Unit = {
def isInterfaceOrTrait(sym: Symbol) = sym.isInterface || sym.isTrait
// a signature should always start with a class
def ensureClassAsFirstParent(tps: List[Type]) = tps match {
case Nil => ObjectTpe :: Nil
case head :: tail if isInterfaceOrTrait(head.typeSymbol) => ObjectTpe :: tps
case _ => tps
}
val minParents = minimizeParents(cls, parents)
val validParents =
if (isTraitSignature)
// java is unthrilled about seeing interfaces inherit from classes
minParents filter (p => isInterfaceOrTrait(p.typeSymbol))
else minParents
val ps = ensureClassAsFirstParent(validParents)
ps.foreach(boxedSig)
}
def boxedSig(tp: Type): Unit = jsig(tp, unboxedVCs = false)
def boundsSig(bounds: List[Type]): Unit = {
val (isTrait, isClass) = partitionConserve(bounds)(_.typeSymbol.isTrait)
isClass match {
case Nil => builder.append(':') // + boxedSig(ObjectTpe)
case x :: _ => builder.append(':'); boxedSig(x)
}
isTrait.foreach { tp =>
builder.append(':')
boxedSig(tp)
}
}
def paramSig(tsym: Symbol): Unit = {
builder.append(tsym.name)
boundsSig(hiBounds(tsym.info.bounds))
}
def polyParamSig(tparams: List[Symbol]): Unit = (
if (!tparams.isEmpty) {
builder.append('<')
tparams foreach paramSig
builder.append('>')
}
)
// Anything which could conceivably be a module (i.e. isn't known to be
// a type parameter or similar) must go through here or the signature is
// likely to end up with Foo.Empty where it needs Foo.Empty$.
def fullNameInSig(sym: Symbol): Unit = builder.append('L').append(enteringJVM(sym.javaBinaryNameString))
@noinline
def jsig(tp0: Type, existentiallyBound: List[Symbol] = Nil, toplevel: Boolean = false, unboxedVCs: Boolean = true): Unit = {
@inline def jsig1(tp0: Type) = jsig(tp0, existentiallyBound = Nil, toplevel = false, unboxedVCs = true)
val tp = tp0.dealias
tp match {
case st: SubType =>
jsig(st.supertype, existentiallyBound, toplevel, unboxedVCs)
case ExistentialType(tparams, tpe) =>
jsig(tpe, tparams, toplevel, unboxedVCs)
case TypeRef(pre, sym, args) =>
def argSig(tp: Type): Unit =
if (existentiallyBound contains tp.typeSymbol) {
val bounds = tp.typeSymbol.info.bounds
if (!(AnyRefTpe <:< bounds.hi)) {
builder.append('+')
boxedSig(bounds.hi)
}
else if (!(bounds.lo <:< NullTpe)) {
builder.append('-')
boxedSig(bounds.lo)
}
else builder.append('*')
} else tp match {
case PolyType(_, res) =>
builder.append('*') // scala/bug#7932
case _ =>
boxedSig(tp)
}
def classSig(): Unit = {
markClassUsed(sym)
val preRebound = pre.baseType(sym.owner) // #2585
if (needsJavaSig(sym, preRebound, Nil)) {
val i = builder.length()
jsig(preRebound, existentiallyBound, toplevel = false, unboxedVCs = true)
if (builder.charAt(i) == 'L') {
builder.delete(builder.length() - 1, builder.length())// delete ';'
// If the prefix is a module, drop the '$'. Classes (or modules) nested in modules
// are separated by a single '$' in the filename: `object o { object i }` is o$i$.
if (preRebound.typeSymbol.isModuleClass)
builder.delete(builder.length() - 1, builder.length())
// Ensure every '.' in the generated signature immediately follows
// a close angle bracket '>'. Any which do not are replaced with '$'.
// This arises due to multiply nested classes in the face of the
// rewriting explained at rebindInnerClass.
// TODO revisit this. Does it align with javac for code that can be expressed in both languages?
val delimiter = if (builder.charAt(builder.length() - 1) == '>') '.' else '$'
builder.append(delimiter).append(sym.javaSimpleName)
} else fullNameInSig(sym)
} else fullNameInSig(sym)
if (!args.isEmpty) {
builder.append('<')
args foreach argSig
builder.append('>')
}
builder.append(';')
}
// If args isEmpty, Array is being used as a type constructor
if (sym == ArrayClass && args.nonEmpty) {
if (unboundedGenericArrayLevel(tp) == 1) jsig1(ObjectTpe)
else {
builder.append(ARRAY_TAG)
args.foreach(jsig1(_))
}
}
else if (isTypeParameterInSig(sym, sym0)) {
assert(!sym.isAliasType, "Unexpected alias type: " + sym)
builder.append(TVAR_TAG).append(sym.name).append(';')
}
else if (sym == AnyClass || sym == AnyValClass || sym == SingletonClass)
jsig1(ObjectTpe)
else if (sym == UnitClass)
jsig1(BoxedUnitTpe)
else if (sym == NothingClass)
jsig1(RuntimeNothingClass.tpe)
else if (sym == NullClass)
jsig1(RuntimeNullClass.tpe)
else if (isPrimitiveValueClass(sym)) {
if (!unboxedVCs) jsig1(ObjectTpe)
else if (sym == UnitClass) jsig1(BoxedUnitTpe)
else builder.append(abbrvTag(sym))
}
else if (sym.isDerivedValueClass) {
if (unboxedVCs) {
val unboxedSeen = (tp memberType sym.derivedValueClassUnbox).finalResultType
jsig(unboxedSeen, existentiallyBound, toplevel, unboxedVCs = true)
} else classSig
}
else if (sym.isClass)
classSig
else
jsig(erasure(sym0)(tp), existentiallyBound, toplevel, unboxedVCs)
case PolyType(tparams, restpe) =>
assert(tparams.nonEmpty, tparams)
if (toplevel) polyParamSig(tparams)
jsig1(restpe)
case MethodType(params, restpe) =>
builder.append('(')
params foreach (p => {
val isClassOuterParam = sym0.isClassConstructor && p.isOuterParam
if (!isClassOuterParam) {
val tp = p.attachments.get[TypeParamVarargsAttachment] match {
case Some(att) =>
// For @varargs forwarders, a T* parameter has type Array[Object] in the forwarder
// instead of Array[T], as the latter would erase to Object (instead of Array[Object]).
// To make the generic signature correct ("[T", not "[Object"), an attachment on the
// parameter symbol stores the type T that was replaced by Object.
builder.append('['); att.typeParamRef
case _ => p.tpe
}
jsig1(tp)
}
})
builder.append(')')
if (restpe.typeSymbol == UnitClass || sym0.isConstructor) builder.append(VOID_TAG) else jsig1(restpe)
case RefinedType(parents, decls) =>
jsig(intersectionDominator(parents), existentiallyBound = Nil, toplevel = false, unboxedVCs = unboxedVCs)
case ClassInfoType(parents, _, _) =>
superSig(tp.typeSymbol, parents)
case AnnotatedType(_, atp) =>
jsig(atp, existentiallyBound, toplevel, unboxedVCs)
case BoundedWildcardType(bounds) =>
println("something's wrong: "+sym0+":"+sym0.tpe+" has a bounded wildcard type")
jsig(bounds.hi, existentiallyBound, toplevel, unboxedVCs)
case _ =>
val etp = erasure(sym0)(tp)
if (etp eq tp) throw new UnknownSig
else jsig1(etp)
}
}
val throwsArgs = sym0.annotations flatMap ThrownException.unapply
if (needsJavaSig(sym0, info, throwsArgs)) {
try {
jsig(info, toplevel = true)
throwsArgs.foreach { t =>
builder.append('^')
jsig(t, toplevel = true)
}
Some(builder.toString)
}
catch { case ex: UnknownSig => None }
}
else None
}
class UnknownSig extends Exception
/** Add calls to supermixin constructors
* `super[mix].$init$()`
* to tree, which is assumed to be the body of a constructor of class clazz.
*/
private def addMixinConstructorCalls(tree: Tree, clazz: Symbol): Tree = {
// TODO: move to constructors?
def mixinConstructorCalls: List[Tree] = {
for (mc <- clazz.mixinClasses.reverse if mc.isTrait && mc.primaryConstructor != NoSymbol)
yield atPos(tree.pos) {
Apply(SuperSelect(clazz, mc.primaryConstructor), Nil)
}
}
tree match {
case Block(Nil, expr) =>
// AnyVal constructor - have to provide a real body so the
// jvm doesn't throw a VerifyError. But we can't add the
// body until now, because the typer knows that Any has no
// constructor and won't accept a call to super.init.
assert((clazz isSubClass AnyValClass) || clazz.info.parents.isEmpty, clazz)
Block(List(Apply(gen.mkSuperInitCall, Nil)), expr)
case Block(stats, expr) =>
// needs `hasSymbolField` check because `supercall` could be a block (named / default args)
val (presuper, supercall :: rest) = stats span (t => t.hasSymbolWhich(_ hasFlag PRESUPER))
treeCopy.Block(tree, presuper ::: (supercall :: mixinConstructorCalls ::: rest), expr)
}
}
val deconstMap = new TypeMap {
// For some reason classOf[Foo] creates ConstantType(Constant(tpe)) with an actual Type for tpe,
// which is later translated to a Class. Unfortunately that means we have bugs like the erasure
// of Class[Foo] and classOf[Bar] not being seen as equivalent, leading to duplicate method
// generation and failing bytecode. See ticket #4753.
def apply(tp: Type): Type = tp match {
case PolyType(_, _) => mapOver(tp)
case MethodType(_, _) => mapOver(tp) // nullarymethod was eliminated during uncurry
case ConstantType(Constant(_: Type)) => ClassClass.tpe // all classOfs erase to Class
case ConstantType(value) => value.tpe.deconst
case _ => tp.deconst
}
}
// ## requires a little translation
private lazy val poundPoundMethods = Set[Symbol](Any_##, Object_##)
// Methods on Any/Object which we rewrite here while we still know what
// is a primitive and what arrived boxed.
private lazy val interceptedMethods = poundPoundMethods ++ primitiveGetClassMethods
// -------- erasure on trees ------------------------------------------
override def newTyper(context: Context) = new Eraser(context)
class EnterBridges(unit: CompilationUnit, root: Symbol) {
val site = root.thisType
val bridgesScope = newScope
val bridgeTarget = mutable.HashMap[Symbol, Symbol]()
val opc = enteringExplicitOuter { new overridingPairs.BridgesCursor(root) }
def computeAndEnter(): Unit = {
while (opc.hasNext) {
if (enteringExplicitOuter(!opc.low.isDeferred))
checkPair(opc.currentPair)
opc.next()
}
}
/** Check that a bridge only overrides members that are also overridden by the original member.
* This test is necessary only for members that have a value class in their type.
* Such members are special because their types after erasure and after post-erasure differ/.
* This means we generate them after erasure, but the post-erasure transform might introduce
* a name clash. The present method guards against these name clashes.
*
* @param member The original member
* @param other The overridden symbol for which the bridge was generated
* @param bridge The bridge
*/
def checkBridgeOverrides(member: Symbol, other: Symbol, bridge: Symbol): scala.collection.Seq[(Position, String)] = {
def fulldef(sym: Symbol) =
if (sym == NoSymbol) sym.toString
else s"$sym: ${sym.tpe} in ${sym.owner}"
val clashErrors = mutable.Buffer[(Position, String)]()
def clashError(what: String) = {
val pos = if (member.owner == root) member.pos else root.pos
val msg = sm"""bridge generated for member ${fulldef(member)}
|which overrides ${fulldef(other)}
|clashes with definition of $what;
|both have erased type ${exitingPostErasure(bridge.tpe)}"""
clashErrors += Tuple2(pos, msg)
}
for (bc <- root.baseClasses) {
if (settings.debug)
exitingPostErasure(println(
sm"""check bridge overrides in $bc
|${bc.info.nonPrivateDecl(bridge.name)}
|${site.memberType(bridge)}
|${site.memberType(bc.info.nonPrivateDecl(bridge.name) orElse IntClass)}
|${(bridge.matchingSymbol(bc, site))}"""))
def overriddenBy(sym: Symbol) =
sym.matchingSymbol(bc, site).alternatives filter (sym => !sym.isBridge)
for (overBridge <- exitingPostErasure(overriddenBy(bridge))) {
if (overBridge == member) {
clashError("the member itself")
} else {
val overMembers = overriddenBy(member)
if (!overMembers.exists(overMember =>
exitingPostErasure(overMember.tpe =:= overBridge.tpe))) {
clashError(fulldef(overBridge))
}
}
}
}
clashErrors
}
/** TODO - work through this logic with a fine-toothed comb, incorporating
* into SymbolPairs where appropriate.
*/
def checkPair(pair: SymbolPair): Unit = {
import pair._
val member = low
val other = high
val otpe = highErased
val bridgeNeeded = exitingErasure (
!member.isMacro &&
!(other.tpe =:= member.tpe) &&
!(deconstMap(other.tpe) =:= deconstMap(member.tpe)) &&
{ var e = bridgesScope.lookupEntry(member.name)
while ((e ne null) && !((e.sym.tpe =:= otpe) && (bridgeTarget(e.sym) == member)))
e = bridgesScope.lookupNextEntry(e)
(e eq null)
}
)
if (!bridgeNeeded)
return
var newFlags = (member.flags | BRIDGE | ARTIFACT) & ~(ACCESSOR | DEFERRED | LAZY)
// If `member` is a ModuleSymbol, the bridge should not also be a ModuleSymbol. Otherwise we
// end up with two module symbols with the same name in the same scope, which is surprising
// when implementing later phases.
if (member.isModule) newFlags = (newFlags | METHOD) & ~(MODULE | STABLE)
val bridge = other.cloneSymbolImpl(root, newFlags).setPos(root.pos).setAnnotations(member.annotations)
debuglog("generating bridge from %s (%s): %s%s to %s: %s%s".format(
other, flagsToString(newFlags),
otpe, other.locationString, member,
specialErasure(root)(member.tpe), member.locationString)
)
// the parameter symbols need to have the new owner
bridge setInfo (otpe cloneInfo bridge)
bridgeTarget(bridge) = member
def sigContainsValueClass = (member.tpe exists (_.typeSymbol.isDerivedValueClass))
val shouldAdd = (
!sigContainsValueClass
|| (checkBridgeOverrides(member, other, bridge) match {
case Nil => true
case es if member.owner.isAnonymousClass => resolveAnonymousBridgeClash(member, bridge); true
case es => for ((pos, msg) <- es) reporter.error(pos, msg); false
})
)
if (shouldAdd) {
exitingErasure(root.info.decls enter bridge)
bridgesScope enter bridge
addBridge(bridge, member, other)
//bridges ::= makeBridgeDefDef(bridge, member, other)
}
}
protected def addBridge(bridge: Symbol, member: Symbol, other: Symbol): Unit = {} // hook for GenerateBridges
}
class GenerateBridges(unit: CompilationUnit, root: Symbol) extends EnterBridges(unit, root) {
var bridges = List.empty[Tree]
var toBeRemoved = immutable.Set.empty[Symbol]
def generate(): (List[Tree], immutable.Set[Symbol]) = {
super.computeAndEnter()
(bridges, toBeRemoved)
}
override def addBridge(bridge: Symbol, member: Symbol, other: Symbol): Unit = {
if (other.owner == root) {
exitingErasure(root.info.decls.unlink(other))
toBeRemoved += other
}
bridges ::= makeBridgeDefDef(bridge, member, other)
}
final def makeBridgeDefDef(bridge: Symbol, member: Symbol, other: Symbol) = exitingErasure {
// type checking ensures we can safely call `other`, but unless `member.tpe <:< other.tpe`,
// calling `member` is not guaranteed to succeed in general, there's
// nothing we can do about this, except for an unapply: when this subtype test fails,
// return None without calling `member`
//
// TODO: should we do this for user-defined unapplies as well?
// does the first argument list have exactly one argument -- for user-defined unapplies we can't be sure
def maybeWrap(bridgingCall: Tree): Tree = {
val guardExtractor = ( // can't statically know which member is going to be selected, so don't let this depend on member.isSynthetic
(member.name == nme.unapply || member.name == nme.unapplySeq)
&& !exitingErasure((member.tpe <:< other.tpe))) // no static guarantees (TODO: is the subtype test ever true?)
import CODE._
val _false = FALSE
val pt = member.tpe.resultType
lazy val zero =
if (_false.tpe <:< pt) _false
else if (NoneModule.tpe <:< pt) REF(NoneModule)
else EmptyTree
if (guardExtractor && (zero ne EmptyTree)) {
val typeTest = gen.mkIsInstanceOf(REF(bridge.firstParam), member.tpe.params.head.tpe)
IF (typeTest) THEN bridgingCall ELSE zero
} else bridgingCall
}
val rhs = member.tpe match {
case MethodType(Nil, FoldableConstantType(c)) => Literal(c)
case _ =>
val sel: Tree = Select(This(root), member)
val bridgingCall = bridge.paramss.foldLeft(sel)((fun, vparams) => Apply(fun, vparams map Ident))
maybeWrap(bridgingCall)
}
DefDef(bridge, rhs)
}
}
/** The modifier typer which retypes with erased types. */
class Eraser(_context: Context) extends Typer(_context) {
val typeAdapter = new TypeAdapter { def typedPos(pos: Position)(tree: Tree): Tree = Eraser.this.typedPos(pos)(tree) }
import typeAdapter._
override protected def stabilize(tree: Tree, pre: Type, mode: Mode, pt: Type): Tree = tree
/** Replace member references as follows:
*
* - `x == y` for == in class Any becomes `x equals y` with equals in class Object.
* - `x != y` for != in class Any becomes `!(x equals y)` with equals in class Object.
* - x.asInstanceOf[T] becomes x.$asInstanceOf[T]
* - x.isInstanceOf[T] becomes x.$isInstanceOf[T]
* - x.isInstanceOf[ErasedValueType(tref)] becomes x.isInstanceOf[tref.sym.tpe]
* - x.m where m is some other member of Any becomes x.m where m is a member of class Object.
* - x.m where x has unboxed value type T and m is not a directly translated member of T becomes T.box(x).m
* - x.m where x is a reference type and m is a directly translated member of value type T becomes x.TValue().m
* - All forms of x.m where x is a boxed type and m is a member of an unboxed class become
* x.m where m is the corresponding member of the boxed class.
*/
private def adaptMember(tree: Tree): Tree = {
//Console.println("adaptMember: " + tree);
tree match {
case Apply(ta @ TypeApply(sel @ Select(qual, name), targ :: Nil), List())
if tree.symbol == Any_asInstanceOf =>
val qual1 = typedQualifier(qual, NOmode, ObjectTpe) // need to have an expected type, see #3037
// !!! Make pending/run/t5866b.scala work. The fix might be here and/or in unbox1.
if (isPrimitiveValueType(targ.tpe) || isErasedValueType(targ.tpe)) {
val noNullCheckNeeded = targ.tpe match {
case ErasedValueType(_, underlying) => isPrimitiveValueType(underlying)
case _ => true
}
if (noNullCheckNeeded) unbox(qual1, targ.tpe)
else {
val untyped =
// util.trace("new asinstanceof test") {
gen.evalOnce(qual1, context.owner, fresh) { qual =>
If(Apply(Select(qual(), nme.eq), List(Literal(Constant(null)) setType NullTpe)),
Literal(Constant(null)) setType targ.tpe,
unbox(qual(), targ.tpe))
}
// }
typed(untyped)
}
} else treeCopy.Apply(tree, treeCopy.TypeApply(ta, treeCopy.Select(sel, qual1, name), List(targ)), List())
case Apply(TypeApply(sel @ Select(qual, name), List(targ)), List())
if tree.symbol == Any_isInstanceOf =>
targ.tpe match {
case ErasedValueType(clazz, _) => targ.setType(clazz.tpe)
case _ =>
}
tree
case Select(qual, name) =>
if (tree.symbol == NoSymbol) {
tree
} else if (name == nme.CONSTRUCTOR) {
if (tree.symbol.owner == AnyValClass) tree.symbol = ObjectClass.primaryConstructor
tree
} else if (tree.symbol == Any_asInstanceOf)
adaptMember(atPos(tree.pos)(Select(qual, Object_asInstanceOf)))
else if (tree.symbol == Any_isInstanceOf)
adaptMember(atPos(tree.pos)(Select(qual, Object_isInstanceOf)))
else if (tree.symbol.owner == AnyClass)
adaptMember(atPos(tree.pos)(Select(qual, getMember(ObjectClass, tree.symbol.name))))
else {
var qual1 = typedQualifier(qual)
if ((isPrimitiveValueType(qual1.tpe) && !isPrimitiveValueMember(tree.symbol)) ||
isErasedValueType(qual1.tpe))
qual1 = box(qual1)
else if (!isPrimitiveValueType(qual1.tpe) && isPrimitiveValueMember(tree.symbol))
qual1 = unbox(qual1, tree.symbol.owner.tpe)
def selectFrom(qual: Tree) = treeCopy.Select(tree, qual, name)
if (isPrimitiveValueMember(tree.symbol) && !isPrimitiveValueType(qual1.tpe)) {
tree.symbol = NoSymbol
selectFrom(qual1)
} else if (isMethodTypeWithEmptyParams(qual1.tpe)) { // see also adaptToType in TypeAdapter
assert(qual1.symbol.isStable, qual1.symbol)
adaptMember(selectFrom(applyMethodWithEmptyParams(qual1)))
} else if (!qual1.isInstanceOf[Super] && (!isJvmAccessible(qual1.tpe.typeSymbol, context) || !qual1.tpe.typeSymbol.isSubClass(tree.symbol.owner))) {
// A selection requires a cast:
// - In `(foo: Option[String]).get.trim`, the qualifier has type `Object`. We cast
// to the owner of `trim` (`String`), unless the owner is a non-accessible Java
// class, in which case a `QualTypeSymAttachment` is present (see below).
// - In `a.b().c()`, the qualifier `a.b()` may have an accessible type `X` before
// erasure, but a non-accessible type `Y` after erasure (scala/bug#10450). Again
// we cast to the owner of `c`, or, if that is not accessible either, to the
// class stored in the `QualTypeSymAttachment`.
//
// A `QualTypeSymAttachment` is present if the selected member's owner is not an
// accessible (java-defined) class, see `preErase`.
//
// Selections from `super` are not handled here because inserting a cast would not be
// legal code. Instead there's a special case in `typedSelectInternal`.
val qualTpe = tree.getAndRemoveAttachment[QualTypeSymAttachment] match {
case Some(a) => a.sym.tpe
case None => tree.symbol.owner.tpe
}
selectFrom(cast(qual1, qualTpe))
} else {
selectFrom(qual1)
}
}
case SelectFromArray(qual, name, erasure) =>
var qual1 = typedQualifier(qual)
if (!(qual1.tpe <:< erasure)) qual1 = cast(qual1, erasure)
Select(qual1, name) copyAttrs tree
case _ =>
tree
}
}
/** A replacement for the standard typer's adapt method.
*/
override protected def adapt(tree: Tree, mode: Mode, pt: Type, original: Tree = EmptyTree): Tree =
adaptToType(tree, pt)
/** A replacement for the standard typer's `typed1` method.
*/
override def typed1(tree: Tree, mode: Mode, pt: Type): Tree = {
val tree1 = try {
tree match {
case DefDef(_,_,_,_,_,_) if tree.symbol.isClassConstructor && tree.symbol.isPrimaryConstructor && tree.symbol.owner != ArrayClass =>
super.typed1(deriveDefDef(tree)(addMixinConstructorCalls(_, tree.symbol.owner)), mode, pt) // (3)
case Template(parents, self, body) =>
val parents1 = tree.symbol.owner.info.parents map (t => TypeTree(t) setPos tree.pos)
super.typed1(treeCopy.Template(tree, parents1, noSelfType, body), mode, pt)
case InjectDerivedValue(arg) =>
(tree.attachments.get[TypeRefAttachment]: @unchecked) match {
case Some(itype) =>
val tref = itype.tpe
val argPt = enteringErasure(erasedValueClassArg(tref))
log(s"transforming inject $arg -> $tref/$argPt")
val result = typed(arg, mode, argPt)
log(s"transformed inject $arg -> $tref/$argPt = $result:${result.tpe}")
return result setType ErasedValueType(tref.sym, result.tpe)
}
case _ =>
super.typed1(adaptMember(tree), mode, pt)
}
} catch {
case er: TypeError =>
Console.println("exception when typing " + tree+"/"+tree.getClass)
Console.println(er.msg + " in file " + context.owner.sourceFile)
er.printStackTrace
abort("unrecoverable error")
case ex: Exception =>
//if (settings.debug.value)
try Console.println("exception when typing " + tree)
finally throw ex
throw ex
}
def adaptCase(cdef: CaseDef): CaseDef = {
val newCdef = deriveCaseDef(cdef)(adaptToType(_, tree1.tpe))
newCdef setType newCdef.body.tpe
}
def adaptBranch(branch: Tree): Tree =
if (branch == EmptyTree) branch else adaptToType(branch, tree1.tpe)
tree1 match {
case fun: Function =>
fun.attachments.get[SAMFunction] match {
case Some(SAMFunction(samTp, _, _)) => fun setType specialScalaErasure(samTp)
case _ => fun
}
case If(cond, thenp, elsep) =>
treeCopy.If(tree1, cond, adaptBranch(thenp), adaptBranch(elsep))
case Match(selector, cases) =>
treeCopy.Match(tree1, selector, cases map adaptCase)
case Try(block, catches, finalizer) =>
treeCopy.Try(tree1, adaptBranch(block), catches map adaptCase, finalizer)
case Ident(_) | Select(_, _) =>
if (tree1.symbol.isOverloaded) {
val first = tree1.symbol.alternatives.head
val firstTpe = first.tpe
val sym1 = tree1.symbol.filter {
alt => alt == first || !(firstTpe looselyMatches alt.tpe)
}
if (tree.symbol ne sym1) {
tree1 setSymbol sym1 setType sym1.tpe
}
}
tree1
case _ =>
tree1
}
}
}
/** The erasure transformer */
class ErasureTransformer(unit: CompilationUnit) extends Transformer {
import overridingPairs.Cursor
private def doubleDefError(pair: SymbolPair): Unit = {
import pair._
if (!pair.isErroneous) {
val what = (
if (low.owner == high.owner) "double definition"
else if (low.owner == base) "name clash between defined and inherited member"
else "name clash between inherited members"
)
val when = if (exitingRefchecks(lowType matches highType)) "" else " after erasure: " + exitingPostErasure(highType)
reporter.error(pos,
s"""|$what:
|${exitingRefchecks(highString)} and
|${exitingRefchecks(lowString)}
|have same type$when""".trim.stripMargin
)
}
low setInfo ErrorType
}
private def sameTypeAfterErasure(sym1: Symbol, sym2: Symbol) =
exitingPostErasure(sym1.info =:= sym2.info) && !sym1.isMacro && !sym2.isMacro
/** TODO - adapt SymbolPairs so it can be used here. */
private def checkNoDeclaredDoubleDefs(base: Symbol): Unit = {
val decls = base.info.decls
// scala/bug#8010 force infos, otherwise makeNotPrivate in ExplicitOuter info transformer can trigger
// a scope rehash while were iterating and we can see the same entry twice!
// Inspection of SymbolPairs (the basis of OverridingPairs), suggests that it is immune
// from this sort of bug as it copies the symbols into a temporary scope *before* any calls to `.info`,
// ie, no variant of it calls `info` or `tpe` in `SymbolPair#exclude`.
//
// Why not just create a temporary scope here? We need to force the name changes in any case before
// we do these checks, so that we're comparing same-named methods based on the expanded names that actually
// end up in the bytecode.
exitingPostErasure(decls.foreach(_.info))
var e = decls.elems
while (e ne null) {
if (e.sym.isTerm) {
var e1 = decls lookupNextEntry e
while (e1 ne null) {
assert(e.sym ne e1.sym, s"Internal error: encountered ${e.sym.debugLocationString} twice during scope traversal. This might be related to scala/bug#8010.")
if (sameTypeAfterErasure(e.sym, e1.sym))
doubleDefError(new SymbolPair(base, e.sym, e1.sym))
e1 = decls lookupNextEntry e1
}
}
e = e.next
}
}
private class DoubleDefsCursor(root: Symbol) extends Cursor(root) {
// specialized members have no type history before 'specialize', causing double def errors for curried defs
override def exclude(sym: Symbol): Boolean = (
sym.isType
|| super.exclude(sym)
|| !sym.hasTypeAt(currentRun.refchecksPhase.id)
)
override def matches(high: Symbol) = !high.isPrivate
}
/** Emit an error if there is a double definition. This can happen if:
*
* - A template defines two members with the same name and erased type.
* - A template defines and inherits two members `m` with different types,
* but their erased types are the same.
* - A template inherits two members `m` with different types,
* but their erased types are the same.
*/
private def checkNoDoubleDefs(root: Symbol): Unit = {
checkNoDeclaredDoubleDefs(root)
def isErasureDoubleDef(pair: SymbolPair) = {
import pair._
log(s"Considering for erasure clash:\n$pair")
!exitingRefchecks(lowType matches highType) && sameTypeAfterErasure(low, high)
}
(new DoubleDefsCursor(root)).iterator filter isErasureDoubleDef foreach doubleDefError
}
/** Add bridge definitions to a template. This means:
*
* If there is a concrete member `m` which overrides a member in a base
* class of the template, and the erased types of the two members differ,
* and the two members are not inherited or defined by some parent class
* of the template, then a bridge from the overridden member `m1` to the
* member `m0` is added. The bridge has the erased type of `m1` and
* forwards to `m0`.
*
* No bridge is added if there is already a bridge to `m0` with the erased
* type of `m1` in the template.
*/
private def bridgeDefs(owner: Symbol): (List[Tree], immutable.Set[Symbol]) = {
assert(phase == currentRun.erasurePhase, phase)
new GenerateBridges(unit, owner).generate()
}
def addBridgesToTemplate(stats: List[Tree], base: Symbol): List[Tree] =
if (base.isTrait) stats
else {
val (bridges, toBeRemoved) = bridgeDefs(base)
if (bridges.isEmpty) stats
else (stats filterNot (stat => toBeRemoved contains stat.symbol)) ::: bridges
}
def addBridgesToLambda(lambdaClass: Symbol): Unit = {
assert(phase == currentRun.erasurePhase, phase)
assert(lambdaClass.isClass, lambdaClass)
new EnterBridges(unit, lambdaClass).computeAndEnter()
}
/** Transform tree at phase erasure before retyping it.
* This entails the following:
*
* - Remove all type parameters in class and method definitions.
* - Remove all abstract and alias type definitions.
* - Remove all type applications other than those involving a type test or cast.
* - Remove all empty trees in statements and definitions in a PackageDef.
* - Check that there are no double definitions in a template.
* - Add bridge definitions to a template.
* - Replace all types in type nodes and the EmptyTree object by their erasure.
* Type nodes of type Unit representing result types of methods are left alone.
* - Remove all instance creations new C(arg) where C is an inlined class.
* - Reset all other type attributes to null, thus enforcing a retyping.
*/
private val preTransformer = new TypingTransformer(unit) {
// Work around some incomplete path unification :( there are similar casts in SpecializeTypes
def context: Context = localTyper.context.asInstanceOf[Context]
// TODO: since the spec defines instanceOf checks in terms of pattern matching,
// this extractor should share code with TypeTestTreeMaker. The corresponding
// code is somewhat buried in and entangled with the pattern matching mechanics
// which makes this fiddly to do now.
object SingletonInstanceCheck {
def unapply(pt: Type): Option[(TermSymbol, Tree)] = {
def containsSingleton(tp: Type): Boolean =
tp.dealias match {
case SingleType(_, _) | ConstantType(_) | ThisType(_) | SuperType(_, _) => true
case RefinedType(parents, _) => parents.exists(containsSingleton)
case _ => false
}
if(containsSingleton(pt)) {
val cmpOp = if (pt.typeSymbol.isSubClass(AnyValClass)) Any_equals else Object_eq
val cmpArg = gen.mkAttributedQualifier(pt)
Some((cmpOp, cmpArg))
} else None
}
}
private def preEraseNormalApply(tree: Apply) = {
val fn = tree.fun
val args = tree.args
def qualifier = fn match {
case Select(qual, _) => qual
case TypeApply(Select(qual, _), _) => qual
}
// TODO: this should share logic with TypeTestTreeMaker in the pattern matcher,
// since `x.isInstanceOf[T]` is specified as the pattern match. The corresponding
// code is somewhat buried in and entangled with the pattern matching mechanics
// which makes this fiddly to do now.
def preEraseAsInstanceOf = {
(fn: @unchecked) match {
case TypeApply(Select(qual, _), List(targ)) =>
targ.tpe match {
case argTp if qual.tpe <:< argTp =>
atPos(tree.pos) { Typed(qual, TypeTree(argTp)) }
case argTp if isNumericValueClass(qual.tpe.typeSymbol) && isNumericValueClass(argTp.typeSymbol) =>
atPos(tree.pos)(numericConversion(qual, argTp.typeSymbol))
case _ =>
tree
}
}
// todo: also handle the case where the singleton type is buried in a compound
}
// TODO: this should share logic with TypeTestTreeMaker in the pattern matcher,
// since `x.isInstanceOf[T]` is specified as the pattern match. The corresponding
// code is somewhat buried in and entangled with the pattern matching mechanics
// which makes this fiddly to do now.
// `x match { case _: T => true case _ => false }` (modulo numeric conversion)
def preEraseIsInstanceOf = {
fn match {
case TypeApply(sel @ Select(qual, name), List(targ)) =>
if (qual.tpe != null && isPrimitiveValueClass(qual.tpe.typeSymbol) && targ.tpe != null && targ.tpe <:< AnyRefTpe)
reporter.error(sel.pos, "isInstanceOf cannot test if value types are references.")
def mkIsInstanceOf(q: () => Tree)(tp: Type): Tree =
Apply(
TypeApply(
Select(q(), Object_isInstanceOf) setPos sel.pos,
List(TypeTree(tp) setPos targ.pos)) setPos fn.pos,
List()) setPos tree.pos
targ.tpe match {
case SingletonInstanceCheck(cmpOp, cmpArg) =>
atPos(tree.pos) { Apply(Select(cmpArg, cmpOp), List(qual)) }
case RefinedType(parents, decls) if (parents.lengthIs >= 2) =>
gen.evalOnce(qual, currentOwner, localTyper.fresh) { q =>
// Optimization: don't generate isInstanceOf tests if the static type
// conforms, because it always succeeds. (Or at least it had better.)
// At this writing the pattern matcher generates some instance tests
// involving intersections where at least one parent is statically known true.
// That needs fixing, but filtering the parents here adds an additional
// level of robustness (in addition to the short term fix.)
val parentTests = parents filterNot (qual.tpe <:< _)
if (parentTests.isEmpty) Literal(Constant(true))
else atPos(tree.pos) {
parentTests map mkIsInstanceOf(q) reduceRight gen.mkAnd
}
}
case TypeRef(_, SingletonClass, _) =>
atPos(tree.pos) {
if(qual.tpe <:< AnyRefTpe)
Apply(Select(qual, Object_ne), List(Literal(Constant(null)) setType NullTpe))
else
Literal(Constant(true))
}
case _ => tree
}
case _ => tree
}
}
if (fn.symbol == Any_asInstanceOf) {
preEraseAsInstanceOf
} else if (fn.symbol == Any_isInstanceOf) {
preEraseIsInstanceOf
} else if (fn.symbol.isOnlyRefinementMember) {
// !!! Another spot where we produce overloaded types (see test pos/t6301)
log(s"${fn.symbol.fullLocationString} originates in refinement class - call will be implemented via reflection.")
ApplyDynamic(qualifier, args) setSymbol fn.symbol setPos tree.pos
} else if (fn.symbol.isMethodWithExtension && !fn.symbol.tpe.isErroneous) {
Apply(gen.mkAttributedRef(extensionMethods.extensionMethod(fn.symbol)), qualifier :: args)
} else {
tree
}
}
private def preEraseApply(tree: Apply) = {
tree.fun match {
case TypeApply(fun @ Select(qual, name), args @ List(arg))
if ((fun.symbol == Any_isInstanceOf || fun.symbol == Object_isInstanceOf) &&
unboundedGenericArrayLevel(arg.tpe) > 0) => // !!! todo: simplify by having GenericArray also extract trees
val level = unboundedGenericArrayLevel(arg.tpe)
def isArrayTest(arg: Tree) =
gen.mkRuntimeCall(nme.isArray, List(arg, Literal(Constant(level))))
global.typer.typedPos(tree.pos) {
if (level == 1) isArrayTest(qual)
else gen.evalOnce(qual, currentOwner, localTyper.fresh) { qual1 =>
gen.mkAnd(
gen.mkMethodCall(
qual1(),
fun.symbol,
List(specialErasure(fun.symbol)(arg.tpe)),
Nil
),
isArrayTest(qual1())
)
}
}
case fn @ Select(qual, name) =>
val args = tree.args
if (fn.symbol.owner == ArrayClass) {
// Have to also catch calls to abstract types which are bounded by Array.
if (unboundedGenericArrayLevel(qual.tpe.widen) == 1 || qual.tpe.typeSymbol.isAbstractType) {
// convert calls to apply/update/length on generic arrays to
// calls of ScalaRunTime.array_xxx method calls
global.typer.typedPos(tree.pos) {
val arrayMethodName = name match {
case nme.apply => nme.array_apply
case nme.length => nme.array_length
case nme.update => nme.array_update
case nme.clone_ => nme.array_clone
case _ => reporter.error(tree.pos, "Unexpected array member, no translation exists.") ; nme.NO_NAME
}
gen.mkRuntimeCall(arrayMethodName, qual :: args)
}
} else {
// store exact array erasure in map to be retrieved later when we might
// need to do the cast in adaptMember
// Note: No specialErasure needed here because we simply cast, on
// elimination of SelectFromArray, no boxing or unboxing is done there.
treeCopy.Apply(
tree,
SelectFromArray(qual, name, erasure(tree.symbol)(qual.tpe)).copyAttrs(fn),
args)
}
}
else if (args.isEmpty && interceptedMethods(fn.symbol)) {
if (poundPoundMethods.contains(fn.symbol)) {
// This is unattractive, but without it we crash here on ().## because after
// erasure the ScalaRunTime.hash overload goes from Unit => Int to BoxedUnit => Int.
// This must be because some earlier transformation is being skipped on ##, but so
// far I don't know what. For null we now define null.## == 0.
def staticsCall(methodName: TermName): Tree = {
val newTree = gen.mkMethodCall(RuntimeStaticsModule, methodName, qual :: Nil)
global.typer.typed(newTree)
}
qual.tpe.typeSymbol match {
case UnitClass | NullClass => LIT(0)
case IntClass | ShortClass | ByteClass | CharClass => qual
case BooleanClass => If(qual, LIT(true.##), LIT(false.##))
case LongClass => staticsCall(nme.longHash)
case FloatClass => staticsCall(nme.floatHash)
case DoubleClass => staticsCall(nme.doubleHash)
case _ => staticsCall(nme.anyHash)
}
} else if (isPrimitiveValueClass(qual.tpe.typeSymbol)) {
// Rewrite 5.getClass to ScalaRunTime.anyValClass(5)
global.typer.typed(gen.mkRuntimeCall(nme.anyValClass, List(qual, typer.resolveClassTag(tree.pos, qual.tpe.widen))))
} else if (primitiveGetClassMethods.contains(fn.symbol)) {
// if we got here then we're trying to send a primitive getClass method to either
// a) an Any, in which cage Object_getClass works because Any erases to object. Or
//
// b) a non-primitive, e.g. because the qualifier's type is a refinement type where one parent
// of the refinement is a primitive and another is AnyRef. In that case
// we get a primitive form of _getClass trying to target a boxed value
// so we need replace that method name with Object_getClass to get correct behavior.
// See scala/bug#5568.
tree setSymbol Object_getClass
} else {
devWarning(s"The symbol '${fn.symbol}' was intercepted but didn't match any cases, that means the intercepted methods set doesn't match the code")
tree
}
} else qual match {
case New(tpt) if name == nme.CONSTRUCTOR && tpt.tpe.typeSymbol.isDerivedValueClass =>
// println("inject derived: "+arg+" "+tpt.tpe)
val List(arg) = args
val attachment = new TypeRefAttachment(tree.tpe.asInstanceOf[TypeRef])
InjectDerivedValue(arg) updateAttachment attachment
case _ =>
preEraseNormalApply(tree)
}
case _ =>
preEraseNormalApply(tree)
}
}
def preErase(tree: Tree): Tree = tree match {
case tree: Apply =>
preEraseApply(tree)
case TypeApply(fun, args) if (fun.symbol.owner != AnyClass &&
fun.symbol != Object_asInstanceOf &&
fun.symbol != Object_isInstanceOf &&
fun.symbol != Object_synchronized) =>
// leave all other type tests/type casts, remove all other type applications
preErase(fun)
case Select(qual, name) =>
val sym = tree.symbol
val owner = sym.owner
if (owner.isRefinementClass) {
sym.allOverriddenSymbols filterNot (_.owner.isRefinementClass) match {
case overridden :: _ =>
log(s"${sym.fullLocationString} originates in refinement class - replacing with ${overridden.fullLocationString}.")
tree.symbol = overridden
case Nil =>
// Ideally this should not be reached or reachable; anything which would
// get here should have been caught in the surrounding Apply.
devWarning(s"Failed to rewrite reflective apply - now don't know what to do with " + tree)
return treeCopy.Select(tree, gen.mkAttributedCast(qual, qual.tpe.widen), name)
}
}
// This code may add an QualTypeSymAttachment to the Select tree. The referenced class is
// then used in erasure type checking as the type of the Select's qualifier. This fixes
// two situations where erasure type checking cannot assign a precise enough type.
//
// - In a `super.m` selection, erasure typing assigns the type of the superclass to the
// Super tree. This is wrong if `m` is a member of a trait (not the superclass). A
// special-case in `typedSelectInternal` by default assigns m's owner in this case.
// - In a non-super selection, the qualifier may erase to a type that doesn't define the
// selected member, for example the qualifier of `(q: Option[String]).get.trim` erases
// to Object. Similarly, the qualifier may erase to a Java class that *does* define the
// selected member but is not accessible (scala/bug#10450).
// Erasure's `adaptMember` detects these cases and, by default, introduces a cast to
// the member's owner.
//
// In both cases, using the member's owner is not legal if the member is defined in
// Java and the owner class is not accessible (scala/bug#7936, scala/bug#4283). In this
// situation we store a valid class type of the qualifier in the attachment.
// - For `super.m`, we store a direct parent of the current class
// - For a non-super selection, we store the non-erased class type of the qualifier
//
// In addition, for `super.m` selections, we also store a direct parent of the current
// class if `m` is defined in Java. This avoids the need for having the Java class as
// a direct parent (scala-dev#143).
if (qual.isInstanceOf[Super]) {
val qualSym = accessibleOwnerOrParentDefiningMember(sym, qual.tpe.typeSymbol.parentSymbolsIterator, context) match {
case Some(p) => p
case None =>
// There is no test for this warning, I have been unable to come up with an example that would trigger it.
// In a selection `a.m`, there must be a direct parent from which `m` can be selected.
reporter.error(tree.pos, s"Unable to emit super reference to ${sym.fullLocationString}, $owner is not accessible in ${context.enclClass.owner}")
owner
}
if (sym.isJavaDefined && qualSym.isTraitOrInterface)
requiredDirectInterfaces.getOrElseUpdate(context.enclClass.owner, mutable.Set.empty) += qualSym
if (qualSym != owner)
tree.updateAttachment(new QualTypeSymAttachment(qualSym))
} else if (!isJvmAccessible(owner, context)) {
val qualSym = qual.tpe.typeSymbol
if (qualSym != owner && isJvmAccessible(qualSym, context) && definesMemberAfterErasure(qualSym, sym))
tree.updateAttachment(new QualTypeSymAttachment(qualSym))
else
reporter.error(tree.pos, s"Unable to emit reference to ${sym.fullLocationString}, $owner is not accessible in ${context.enclClass.owner}")
}
tree
case Template(parents, self, body) =>
//Console.println("checking no dble defs " + tree)//DEBUG
checkNoDoubleDefs(tree.symbol.owner)
treeCopy.Template(tree, parents, noSelfType, addBridgesToTemplate(body, currentOwner))
case Match(selector, cases) =>
treeCopy.Match(tree, Typed(selector, TypeTree(selector.tpe)), cases)
case Literal(ct) =>
// We remove the original tree attachments in pre-erasure to free up memory
val cleanLiteral = tree.removeAttachment[OriginalTreeAttachment]
if (ct.tag == ClazzTag && ct.typeValue.typeSymbol != definitions.UnitClass) {
val typeValue = ct.typeValue.dealiasWiden
val erased = erasure(typeValue.typeSymbol) applyInArray typeValue
treeCopy.Literal(cleanLiteral, Constant(erased))
} else cleanLiteral
case ClassDef(_,_,_,_) =>
debuglog("defs of " + tree.symbol + " = " + tree.symbol.info.decls)
copyClassDef(tree)(tparams = Nil)
case DefDef(_,_,_,_,_,_) =>
copyDefDef(tree)(tparams = Nil)
case TypeDef(_, _, _, _) =>
EmptyTree
case fun: Function =>
fun.attachments.get[SAMFunction] foreach {
samf => addBridgesToLambda(samf.synthCls)
}
fun
case _ =>
tree
}
override def transform(tree: Tree): Tree = {
// Reply to "!!! needed?" which adorned the next line: without it, build fails with:
// Exception in thread "main" scala.tools.nsc.symtab.Types$TypeError:
// value array_this is not a member of object scala.runtime.ScalaRunTime
//
// What the heck is array_this? See preTransformer in this file:
// gen.mkRuntimeCall("array_"+name, qual :: args)
if (tree.symbol == ArrayClass && !tree.isType) tree
else {
val tree1 = preErase(tree)
tree1 match {
case TypeApply(fun, targs @ List(targ)) if (fun.symbol == Any_asInstanceOf || fun.symbol == Object_synchronized) && targ.tpe == UnitTpe =>
// scala/bug#9066 prevent transforming `o.asInstanceOf[Unit]` to `o.asInstanceOf[BoxedUnit]`.
// adaptMember will then replace the call by a reference to BoxedUnit.UNIT.
treeCopy.TypeApply(tree1, transform(fun), targs).clearType()
case EmptyTree | TypeTree() =>
tree1 setType specialScalaErasure(tree1.tpe)
case ArrayValue(elemtpt, trees) =>
treeCopy.ArrayValue(
tree1, elemtpt setType specialScalaErasure.applyInArray(elemtpt.tpe), trees map transform).clearType()
case ValDef(_, _, tpt, rhs) =>
val vd1 = super.transform(tree1).clearType().asInstanceOf[ValDef]
vd1.tpt.tpe match {
case FoldableConstantType(_) if !vd1.rhs.isInstanceOf[Literal] =>
val deconst = vd1.tpt.tpe.deconst
vd1.tpt setType deconst
tree1.symbol.setInfo(deconst)
case _ =>
}
vd1
case DefDef(_, _, _, _, tpt, _) =>
// TODO: move this in some post-processing transform in the fields phase?
if (fields.symbolAnnotationsTargetFieldAndGetter(tree.symbol))
fields.dropFieldAnnotationsFromGetter(tree.symbol)
try super.transform(tree1).clearType()
finally tpt setType specialErasure(tree1.symbol)(tree1.symbol.tpe).resultType
case ApplyDynamic(qual, Literal(Constant(bootstrapMethodRef: Symbol)) :: _) =>
tree
case _: Apply if tree1 ne tree =>
/* some Apply trees get replaced (in `preEraseApply`) with one of
* their subtrees, which needs to be `preErase`d in its entirety,
* not just recursed over by super.transform(). */
transform(tree1)
case _ =>
super.transform(tree1).clearType()
}
}
}
}
/** The main transform function: Pretransform the tree, and then
* re-type it at phase erasure.next.
*/
override def transform(tree: Tree): Tree = {
val tree1 = preTransformer.transform(tree)
// log("tree after pretransform: "+tree1)
exitingErasure {
newTyper(rootContextPostTyper(unit, tree)).typed(tree1)
}
}
}
final def resolveAnonymousBridgeClash(sym: Symbol, bridge: Symbol): Unit = {
// TODO reinstate this after Delambdafy generates anonymous classes that meet this requirement.
// require(sym.owner.isAnonymousClass, sym.owner)
log(s"Expanding name of ${sym.debugLocationString} as it clashes with bridge. Renaming deemed safe because the owner is anonymous.")
sym.expandName(sym.owner)
bridge.resetFlag(BRIDGE)
}
/** Does this symbol compile to the underlying platform's notion of an interface,
* without requiring compiler magic before it can be instantiated?
*
* More specifically, we're interested in whether LambdaMetaFactory can instantiate this type,
* assuming it has a single abstract method. In other words, if we were to mix this
* trait into a class, it should not result in any compiler-generated members having to be
* implemented in ("mixed in to") this class (except for the SAM).
*
* Thus, the type must erase to a java interface, either by virtue of being defined as one,
* or by being a trait that:
* - is static (explicitouter or lambdalift may add disqualifying members)
* - extends only other traits that compile to pure interfaces (except for Any)
* - has no val/var members
*
* TODO: can we speed this up using the INTERFACE flag, or set it correctly by construction?
*/
final def compilesToPureInterface(tpSym: Symbol): Boolean = {
def ok(sym: Symbol) =
sym.isJavaInterface ||
sym.isTrait &&
// Unless sym.isStatic, even if the constructor is zero-argument now, it may acquire arguments in explicit outer or lambdalift.
// This is an impl restriction to simplify the decision of whether to expand the SAM during uncurry
// (when we don't yet know whether it will receive an outer pointer in explicit outer or whether lambda lift will add proxies for captures).
// When we delay sam expansion until after explicit outer & lambda lift, we could decide there whether
// to expand sam at compile time or use LMF, and this implementation restriction could be lifted.
sym.isStatic &&
// HACK: this is to rule out traits with an effectful initializer.
// The constructor only exists if the trait's template has statements.
// Sadly, we can't be more precise without access to the tree that defines the SAM's owner.
!sym.primaryConstructor.exists &&
(sym.isInterface || sym.info.decls.forall(mem => mem.isMethod || mem.isType)) // TODO OPT: && {sym setFlag INTERFACE; true})
// we still need to check our ancestors even if the INTERFACE flag is set, as it doesn't take inheritance into account
ok(tpSym) && tpSym.ancestors.forall(sym => (sym eq AnyClass) || (sym eq ObjectClass) || ok(sym))
}
final def isJvmAccessible(cls: Symbol, context: Context): Boolean = {
// Phase travel necessary, isAccessible is too lax after erasure for Java-defined members, see
// comment in its implementation.
!cls.isJavaDefined || enteringErasure(context.isAccessible(cls, cls.owner.thisType))
}
/**
* Check if a class defines a member after erasure. The phase travel is important for
* `trait T extends AClass`: after erasure (and in bytecode), `T` has supertype `Object`, not
* `AClass`.
*/
final def definesMemberAfterErasure(cls: Symbol, member: Symbol): Boolean =
exitingErasure(cls.tpe.member(member.name).alternatives.contains(member))
/**
* The goal of this method is to find a class that is accessible (in bytecode) and can be used
* to select `member`.
* - For constructors, it returns the `member.owner`. We can assume the class is accessible: if
* it wasn't, the typer would have rejected the program, as the class is referenced in source.
* - For Scala-defined members it also returns `member.owner`, all Scala-defined classes are
* public in bytecode.
* - For Java-defined members we prefer a direct parent over of the owner, even if the owner is
* accessible. This way the owner doesn't need to be added as a direct parent, see scala-dev#143.
*/
final def accessibleOwnerOrParentDefiningMember(member: Symbol, parents: Iterator[Symbol], context: Context): Option[Symbol] = {
def eraseAny(cls: Symbol) = if (cls == AnyClass || cls == AnyValClass) ObjectClass else cls
if (member.isConstructor || !member.isJavaDefined) Some(eraseAny(member.owner))
else parents.find { p =>
val e = eraseAny(p)
isJvmAccessible(e, context) && definesMemberAfterErasure(e, member)
} orElse {
val e = eraseAny(member.owner)
if (isJvmAccessible(e, context)) Some(e) else None
}
}
private class TypeRefAttachment(val tpe: TypeRef)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy