All Downloads are FREE. Search and download functionalities are using the official Maven repository.

webit.script.asm3.MethodWriter Maven / Gradle / Ivy

There is a newer version: 1.5.2
Show newest version
/***
 * ASM: a very small and fast Java bytecode manipulation framework
 * Copyright (c) 2000-2007 INRIA, France Telecom
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the copyright holders nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */
package webit.script.asm3;

/**
 * A {@link MethodVisitor} that generates methods in bytecode form. Each visit
 * method of this class appends the bytecode corresponding to the visited
 * instruction to a byte vector, in the order these methods are called.
 * 
 * @author Eric Bruneton
 * @author Eugene Kuleshov
 */
public class MethodWriter{

    /**
     * Pseudo access flag used to denote constructors.
     */
    static final int ACC_CONSTRUCTOR = 262144;
//
//    /**
//     * Frame has exactly the same locals as the previous stack map frame and
//     * number of stack items is zero.
//     */
//    private static final int SAME_FRAME = 0; // to 63 (0-3f)
//
//    /**
//     * Frame has exactly the same locals as the previous stack map frame and
//     * number of stack items is 1
//     */
//    private static final int SAME_LOCALS_1_STACK_ITEM_FRAME = 64; // to 127 (40-7f)
//
//    /**
//     * Reserved for future use
//     */
//    private static final int RESERVED = 128;
//
//    /**
//     * Frame has exactly the same locals as the previous stack map frame and
//     * number of stack items is 1. Offset is bigger then 63;
//     */
//    private static final int SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED = 247; // f7
//
//    /**
//     * Frame where current locals are the same as the locals in the previous
//     * frame, except that the k last locals are absent. The value of k is given
//     * by the formula 251-frame_type.
//     */
//    private static final int CHOP_FRAME = 248; // to 250 (f8-fA)
//
//    /**
//     * Frame has exactly the same locals as the previous stack map frame and
//     * number of stack items is zero. Offset is bigger then 63;
//     */
//    private static final int SAME_FRAME_EXTENDED = 251; // fb
//
//    /**
//     * Frame where current locals are the same as the locals in the previous
//     * frame, except that k additional locals are defined. The value of k is
//     * given by the formula frame_type-251.
//     */
//    private static final int APPEND_FRAME = 252; // to 254 // fc-fe
//
//    /**
//     * Full frame
//     */
//    private static final int FULL_FRAME = 255; // ff

    /**
     * Indicates that the stack map frames must be recomputed from scratch. In
     * this case the maximum stack size and number of local variables is also
     * recomputed from scratch.
     * 
     * @see #compute
     */
//    private static final int FRAMES = 0;

    /**
     * Indicates that the maximum stack size and number of local variables must
     * be automatically computed.
     * 
     * @see #compute
     */
    private static final int MAXS = 1;

    /**
     * Indicates that nothing must be automatically computed.
     * 
     * @see #compute
     */
    private static final int NOTHING = 2;

    /**
     * Next method writer (see {@link ClassWriter#firstMethod firstMethod}).
     */
    MethodWriter next;

    /**
     * The class writer to which this method must be added.
     */
    private final ClassWriter cw;

    /**
     * Access flags of this method.
     */
    private int access;

    /**
     * The index of the constant pool item that contains the name of this
     * method.
     */
    private final int name;

    /**
     * The index of the constant pool item that contains the descriptor of this
     * method.
     */
    private final int desc;

    /**
     * The descriptor of this method.
     */
    private final String descriptor;

    /**
     * The signature of this method.
     */
    String signature;


    /**
     * Number of exceptions that can be thrown by this method.
     */
    int exceptionCount;

    /**
     * The exceptions that can be thrown by this method. More precisely, this
     * array contains the indexes of the constant pool items that contain the
     * internal names of these exception classes.
     */
    int[] exceptions;

    /**
     * The bytecode of this method.
     */
    private ByteVector code = new ByteVector();

    /**
     * Maximum stack size of this method.
     */
    private int maxStack;

    /**
     * Maximum number of local variables for this method.
     */
    private int maxLocals;

    /**
     * Number of stack map frames in the StackMapTable attribute.
     */
    private int frameCount;

    /**
     * The StackMapTable attribute.
     */
    private ByteVector stackMap;

//    /**
//     * The offset of the last frame that was written in the StackMapTable
//     * attribute.
//     */
//    private int previousFrameOffset;

//    /**
//     * The last frame that was written in the StackMapTable attribute.
//     * 
//     * @see #frame
//     */
//    private int[] previousFrame;
//
//    /**
//     * Index of the next element to be added in {@link #frame}.
//     */
//    private int frameIndex;

//    /**
//     * The current stack map frame. The first element contains the offset of the
//     * instruction to which the frame corresponds, the second element is the
//     * number of locals and the third one is the number of stack elements. The
//     * local variables start at index 3 and are followed by the operand stack
//     * values. In summary frame[0] = offset, frame[1] = nLocal, frame[2] =
//     * nStack, frame[3] = nLocal. All types are encoded as integers, with the
//     * same format as the one used in {@link Label}, but limited to BASE types.
//     */
//    private int[] frame;

    /**
     * Number of elements in the exception handler list.
     */
    private int handlerCount;

//    /**
//     * The first element in the exception handler list.
//     */
//    private Handler firstHandler;

//    /**
//     * The last element in the exception handler list.
//     */
//    private Handler lastHandler;

    /**
     * Number of entries in the LocalVariableTable attribute.
     */
    private int localVarCount;

    /**
     * The LocalVariableTable attribute.
     */
    private ByteVector localVar;

    /**
     * Number of entries in the LocalVariableTypeTable attribute.
     */
    private int localVarTypeCount;

    /**
     * The LocalVariableTypeTable attribute.
     */
    private ByteVector localVarType;

    /**
     * Number of entries in the LineNumberTable attribute.
     */
    private int lineNumberCount;

    /**
     * The LineNumberTable attribute.
     */
    private ByteVector lineNumber;

    /**
     * Indicates if some jump instructions are too small and need to be resized.
     */
    private boolean resize;

    /**
     * The number of subroutines in this method.
     */
    private int subroutines;

    // ------------------------------------------------------------------------

    /*
     * Fields for the control flow graph analysis algorithm (used to compute the
     * maximum stack size). A control flow graph contains one node per "basic
     * block", and one edge per "jump" from one basic block to another. Each
     * node (i.e., each basic block) is represented by the Label object that
     * corresponds to the first instruction of this basic block. Each node also
     * stores the list of its successors in the graph, as a linked list of Edge
     * objects.
     */

    /**
     * Indicates what must be automatically computed.
     * 
     * @see #FRAMES
     * @see #MAXS
     * @see #NOTHING
     */
    private final int compute;

    /**
     * A list of labels. This list is the list of basic blocks in the method,
     * i.e. a list of Label objects linked to each other by their
     * {@link Label#successor} field, in the order they are visited by
     * {@link MethodVisitor#visitLabel}, and starting with the first basic block.
     */
    private Label labels;

    /**
     * The previous basic block.
     */
    private Label previousBlock;

    /**
     * The current basic block.
     */
    private Label currentBlock;

    /**
     * The (relative) stack size after the last visited instruction. This size
     * is relative to the beginning of the current basic block, i.e., the true
     * stack size after the last visited instruction is equal to the
     * {@link Label#inputStackTop beginStackSize} of the current basic block
     * plus stackSize.
     */
    private int stackSize;

    /**
     * The (relative) maximum stack size after the last visited instruction.
     * This size is relative to the beginning of the current basic block, i.e.,
     * the true maximum stack size after the last visited instruction is equal
     * to the {@link Label#inputStackTop beginStackSize} of the current basic
     * block plus stackSize.
     */
    private int maxStackSize;

    // ------------------------------------------------------------------------
    // Constructor
    // ------------------------------------------------------------------------

    /**
     * Constructs a new {@link MethodWriter}.
     * 
     * @param cw the class writer in which the method must be added.
     * @param access the method's access flags (see {@link Opcodes}).
     * @param name the method's name.
     * @param desc the method's descriptor (see {@link Type}).
     * @param signature the method's signature. May be null.
     * @param exceptions the internal names of the method's exceptions. May be
     *        null.
     * @param computeMaxs true if the maximum stack size and number
     *        of local variables must be automatically computed.
     * @param computeFrames true if the stack map tables must be
     *        recomputed from scratch.
     */
    MethodWriter(
        final ClassWriter cw,
        final int access,
        final String name,
        final String desc,
        final String signature,
        final String[] exceptions,
        final boolean computeMaxs,
        final boolean computeFrames)
    {
        if (cw.firstMethod == null) {
            cw.firstMethod = this;
        } else {
            cw.lastMethod.next = this;
        }
        cw.lastMethod = this;
        this.cw = cw;
        this.access = access;
        this.name = cw.newUTF8(name);
        this.desc = cw.newUTF8(desc);
        this.descriptor = desc;
        this.signature = signature;
        if (exceptions != null && exceptions.length > 0) {
            exceptionCount = exceptions.length;
            this.exceptions = new int[exceptionCount];
            for (int i = 0; i < exceptionCount; ++i) {
                this.exceptions[i] = cw.newClass(exceptions[i]);
            }
        }
        //this.compute = computeFrames ? FRAMES : (computeMaxs ? MAXS : NOTHING);
        this.compute = computeMaxs ? MAXS : NOTHING;
        if (computeMaxs || computeFrames) {
            if (computeFrames && "".equals(name)) {
                this.access |= ACC_CONSTRUCTOR;
            }
            // updates maxLocals
            int size = Type.getArgumentsAndReturnSizes(descriptor) >> 2;
            if ((access & Opcodes.ACC_STATIC) != 0) {
                --size;
            }
            maxLocals = size;
            // creates and visits the label for the first basic block
            labels = new Label();
            labels.status |= Label.PUSHED;
            visitLabel(labels);
        }
    }

    // ------------------------------------------------------------------------
    // Implementation of the MethodVisitor interface
    // ------------------------------------------------------------------------

//    public void visitCode() {
//    }
//
//    public void visitFrame(
//        final int type,
//        final int nLocal,
//        final Object[] local,
//        final int nStack,
//        final Object[] stack)
//    {
//
//        if (type == Opcodes.F_NEW) {
//            startFrame(code.length, nLocal, nStack);
//            for (int i = 0; i < nLocal; ++i) {
//                if (local[i] instanceof String) {
//                    frame[frameIndex++] = Frame.OBJECT
//                            | cw.addType((String) local[i]);
//                } else if (local[i] instanceof Integer) {
//                    frame[frameIndex++] = ((Integer) local[i]).intValue();
//                } else {
//                    frame[frameIndex++] = Frame.UNINITIALIZED
//                            | cw.addUninitializedType("",
//                                    ((Label) local[i]).position);
//                }
//            }
//            for (int i = 0; i < nStack; ++i) {
//                if (stack[i] instanceof String) {
//                    frame[frameIndex++] = Frame.OBJECT
//                            | cw.addType((String) stack[i]);
//                } else if (stack[i] instanceof Integer) {
//                    frame[frameIndex++] = ((Integer) stack[i]).intValue();
//                } else {
//                    frame[frameIndex++] = Frame.UNINITIALIZED
//                            | cw.addUninitializedType("",
//                                    ((Label) stack[i]).position);
//                }
//            }
//            endFrame();
//        } else {
//            int delta;
//            if (stackMap == null) {
//                stackMap = new ByteVector();
//                delta = code.length;
//            } else {
//                delta = code.length - previousFrameOffset - 1;
//                if (delta < 0) {
//                    if (type == Opcodes.F_SAME) {
//                        return;
//                    } else {
//                        throw new IllegalStateException();
//                    }
//                }
//            }
//
//            switch (type) {
//                case Opcodes.F_FULL:
//                    stackMap.putByte(FULL_FRAME)
//                            .putShort(delta)
//                            .putShort(nLocal);
//                    for (int i = 0; i < nLocal; ++i) {
//                        writeFrameType(local[i]);
//                    }
//                    stackMap.putShort(nStack);
//                    for (int i = 0; i < nStack; ++i) {
//                        writeFrameType(stack[i]);
//                    }
//                    break;
//                case Opcodes.F_APPEND:
//                    stackMap.putByte(SAME_FRAME_EXTENDED + nLocal)
//                            .putShort(delta);
//                    for (int i = 0; i < nLocal; ++i) {
//                        writeFrameType(local[i]);
//                    }
//                    break;
//                case Opcodes.F_CHOP:
//                    stackMap.putByte(SAME_FRAME_EXTENDED - nLocal)
//                            .putShort(delta);
//                    break;
//                case Opcodes.F_SAME:
//                    if (delta < 64) {
//                        stackMap.putByte(delta);
//                    } else {
//                        stackMap.putByte(SAME_FRAME_EXTENDED).putShort(delta);
//                    }
//                    break;
//                case Opcodes.F_SAME1:
//                    if (delta < 64) {
//                        stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME + delta);
//                    } else {
//                        stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED)
//                                .putShort(delta);
//                    }
//                    writeFrameType(stack[0]);
//                    break;
//            }
//
//            previousFrameOffset = code.length;
//            ++frameCount;
//        }
//    }

    public void visitInsn(final int opcode) {
        // adds the instruction to the bytecode of the method
        code.putByte(opcode);
        // update currentBlock
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(opcode, 0, null, null);
//            } else 
            {
                // updates current and max stack sizes
                int size = stackSize + Frame.SIZE[opcode];
                if (size > maxStackSize) {
                    maxStackSize = size;
                }
                stackSize = size;
            }
            // if opcode == ATHROW or xRETURN, ends current block (no successor)
            if ((opcode >= Opcodes.IRETURN && opcode <= Opcodes.RETURN)
                    || opcode == Opcodes.ATHROW)
            {
                noSuccessor();
            }
        }
    }

    public void visitIntInsn(final int opcode, final int operand) {
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(opcode, operand, null, null);
//            } else 
                if (opcode != Opcodes.NEWARRAY) {
                // updates current and max stack sizes only for NEWARRAY
                // (stack size variation = 0 for BIPUSH or SIPUSH)
                int size = stackSize + 1;
                if (size > maxStackSize) {
                    maxStackSize = size;
                }
                stackSize = size;
            }
        }
        // adds the instruction to the bytecode of the method
        if (opcode == Opcodes.SIPUSH) {
            code.put12(opcode, operand);
        } else { // BIPUSH or NEWARRAY
            code.put11(opcode, operand);
        }
    }

    public void visitVarInsn(final int opcode, final int var) {
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(opcode, var, null, null);
//            } else 
            {
                // updates current and max stack sizes
                if (opcode == Opcodes.RET) {
                    // no stack change, but end of current block (no successor)
                    currentBlock.status |= Label.RET;
                    // save 'stackSize' here for future use
                    // (see {@link #findSubroutineSuccessors})
                    currentBlock.inputStackTop = stackSize;
                    noSuccessor();
                } else { // xLOAD or xSTORE
                    int size = stackSize + Frame.SIZE[opcode];
                    if (size > maxStackSize) {
                        maxStackSize = size;
                    }
                    stackSize = size;
                }
            }
        }
        if (compute != NOTHING) {
            // updates max locals
            int n;
            if (opcode == Opcodes.LLOAD || opcode == Opcodes.DLOAD
                    || opcode == Opcodes.LSTORE || opcode == Opcodes.DSTORE)
            {
                n = var + 2;
            } else {
                n = var + 1;
            }
            if (n > maxLocals) {
                maxLocals = n;
            }
        }
        // adds the instruction to the bytecode of the method
        if (var < 4 && opcode != Opcodes.RET) {
            int opt;
            if (opcode < Opcodes.ISTORE) {
                /* ILOAD_0 */
                opt = 26 + ((opcode - Opcodes.ILOAD) << 2) + var;
            } else {
                /* ISTORE_0 */
                opt = 59 + ((opcode - Opcodes.ISTORE) << 2) + var;
            }
            code.putByte(opt);
        } else if (var >= 256) {
            code.putByte(196 /* WIDE */).put12(opcode, var);
        } else {
            code.put11(opcode, var);
        }
//        if (opcode >= Opcodes.ISTORE && compute == FRAMES && handlerCount > 0) {
//            visitLabel(new Label());
//        }
    }

    public void visitTypeInsn(final int opcode, final String type) {
        Item i = cw.newClassItem(type);
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(opcode, code.length, cw, i);
//            } else 
                if (opcode == Opcodes.NEW) {
                // updates current and max stack sizes only if opcode == NEW
                // (no stack change for ANEWARRAY, CHECKCAST, INSTANCEOF)
                int size = stackSize + 1;
                if (size > maxStackSize) {
                    maxStackSize = size;
                }
                stackSize = size;
            }
        }
        // adds the instruction to the bytecode of the method
        code.put12(opcode, i.index);
    }

    public void visitFieldInsn(
        final int opcode,
        final String owner,
        final String name,
        final String desc)
    {
        Item i = cw.newFieldItem(owner, name, desc);
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(opcode, 0, cw, i);
//            } else 
            {
                int size;
                // computes the stack size variation
                char c = desc.charAt(0);
                switch (opcode) {
                    case Opcodes.GETSTATIC:
                        size = stackSize + (c == 'D' || c == 'J' ? 2 : 1);
                        break;
                    case Opcodes.PUTSTATIC:
                        size = stackSize + (c == 'D' || c == 'J' ? -2 : -1);
                        break;
                    case Opcodes.GETFIELD:
                        size = stackSize + (c == 'D' || c == 'J' ? 1 : 0);
                        break;
                    // case Constants.PUTFIELD:
                    default:
                        size = stackSize + (c == 'D' || c == 'J' ? -3 : -2);
                        break;
                }
                // updates current and max stack sizes
                if (size > maxStackSize) {
                    maxStackSize = size;
                }
                stackSize = size;
            }
        }
        // adds the instruction to the bytecode of the method
        code.put12(opcode, i.index);
    }

    public void visitMethodInsn(
        final int opcode,
        final String owner,
        final String name,
        final String desc)
    {
        boolean itf = opcode == Opcodes.INVOKEINTERFACE;
        Item i = (opcode == Opcodes.INVOKEDYNAMIC) ?
                cw.newNameTypeItem(name, desc):
                cw.newMethodItem(owner, name, desc, itf);
        int argSize = i.intVal;
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(opcode, 0, cw, i);
//            } else 
            {
                /*
                 * computes the stack size variation. In order not to recompute
                 * several times this variation for the same Item, we use the
                 * intVal field of this item to store this variation, once it
                 * has been computed. More precisely this intVal field stores
                 * the sizes of the arguments and of the return value
                 * corresponding to desc.
                 */
                if (argSize == 0) {
                    // the above sizes have not been computed yet,
                    // so we compute them...
                    argSize = Type.getArgumentsAndReturnSizes(desc);
                    // ... and we save them in order
                    // not to recompute them in the future
                    i.intVal = argSize;
                }
                int size;
                if (opcode == Opcodes.INVOKESTATIC || opcode == Opcodes.INVOKEDYNAMIC) {
                    size = stackSize - (argSize >> 2) + (argSize & 0x03) + 1;
                } else {
                    size = stackSize - (argSize >> 2) + (argSize & 0x03);
                }
                // updates current and max stack sizes
                if (size > maxStackSize) {
                    maxStackSize = size;
                }
                stackSize = size;
            }
        }
        // adds the instruction to the bytecode of the method
        if (itf) {
            if (argSize == 0) {
                argSize = Type.getArgumentsAndReturnSizes(desc);
                i.intVal = argSize;
            }
            code.put12(Opcodes.INVOKEINTERFACE, i.index).put11(argSize >> 2, 0);
        } else {
            code.put12(opcode, i.index);
            if (opcode==Opcodes.INVOKEDYNAMIC) {
                code.putShort(0);
            }
        }
    }

    public void visitJumpInsn(final int opcode, final Label label) {
        Label nextInsn = null;
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(opcode, 0, null, null);
//                // 'label' is the target of a jump instruction
//                label.getFirst().status |= Label.TARGET;
//                // adds 'label' as a successor of this basic block
//                addSuccessor(Edge.NORMAL, label);
//                if (opcode != Opcodes.GOTO) {
//                    // creates a Label for the next basic block
//                    nextInsn = new Label();
//                }
//            } else 
            {
                if (opcode == Opcodes.JSR) {
                    if ((label.status & Label.SUBROUTINE) == 0) {
                        label.status |= Label.SUBROUTINE;
                        ++subroutines;
                    }
                    currentBlock.status |= Label.JSR;
                    addSuccessor(stackSize + 1, label);
                    // creates a Label for the next basic block
                    nextInsn = new Label();
                    /*
                     * note that, by construction in this method, a JSR block
                     * has at least two successors in the control flow graph:
                     * the first one leads the next instruction after the JSR,
                     * while the second one leads to the JSR target.
                     */
                } else {
                    // updates current stack size (max stack size unchanged
                    // because stack size variation always negative in this
                    // case)
                    stackSize += Frame.SIZE[opcode];
                    addSuccessor(stackSize, label);
                }
            }
        }
        // adds the instruction to the bytecode of the method
        if ((label.status & Label.RESOLVED) != 0
                && label.position - code.length < Short.MIN_VALUE)
        {
            /*
             * case of a backward jump with an offset < -32768. In this case we
             * automatically replace GOTO with GOTO_W, JSR with JSR_W and IFxxx
             *  with IFNOTxxx  GOTO_W , where IFNOTxxx is the
             * "opposite" opcode of IFxxx (i.e., IFNE for IFEQ) and where 
             * designates the instruction just after the GOTO_W.
             */
            if (opcode == Opcodes.GOTO) {
                code.putByte(200); // GOTO_W
            } else if (opcode == Opcodes.JSR) {
                code.putByte(201); // JSR_W
            } else {
                // if the IF instruction is transformed into IFNOT GOTO_W the
                // next instruction becomes the target of the IFNOT instruction
                if (nextInsn != null) {
                    nextInsn.status |= Label.TARGET;
                }
                code.putByte(opcode <= 166
                        ? ((opcode + 1) ^ 1) - 1
                        : opcode ^ 1);
                code.putShort(8); // jump offset
                code.putByte(200); // GOTO_W
            }
            label.put(this, code, code.length - 1, true);
        } else {
            /*
             * case of a backward jump with an offset >= -32768, or of a forward
             * jump with, of course, an unknown offset. In these cases we store
             * the offset in 2 bytes (which will be increased in
             * resizeInstructions, if needed).
             */
            code.putByte(opcode);
            label.put(this, code, code.length - 1, false);
        }
        if (currentBlock != null) {
            if (nextInsn != null) {
                // if the jump instruction is not a GOTO, the next instruction
                // is also a successor of this instruction. Calling visitLabel
                // adds the label of this next instruction as a successor of the
                // current block, and starts a new basic block
                visitLabel(nextInsn);
            }
            if (opcode == Opcodes.GOTO) {
                noSuccessor();
            }
        }
    }

    public void visitLabel(final Label label) {
        // resolves previous forward references to label, if any
        resize |= label.resolve(this, code.length, code.data);
        // updates currentBlock
        if ((label.status & Label.DEBUG) != 0) {
            return;
        }
//        if (compute == FRAMES) {
//            if (currentBlock != null) {
//                if (label.position == currentBlock.position) {
//                    // successive labels, do not start a new basic block
//                    currentBlock.status |= (label.status & Label.TARGET);
//                    label.frame = currentBlock.frame;
//                    return;
//                }
//                // ends current block (with one new successor)
//                addSuccessor(Edge.NORMAL, label);
//            }
//            // begins a new current block
//            currentBlock = label;
//            if (label.frame == null) {
//                label.frame = new Frame();
//                label.frame.owner = label;
//            }
//            // updates the basic block list
//            if (previousBlock != null) {
//                if (label.position == previousBlock.position) {
//                    previousBlock.status |= (label.status & Label.TARGET);
//                    label.frame = previousBlock.frame;
//                    currentBlock = previousBlock;
//                    return;
//                }
//                previousBlock.successor = label;
//            }
//            previousBlock = label;
//        } else 
            if (compute == MAXS) {
            if (currentBlock != null) {
                // ends current block (with one new successor)
                currentBlock.outputStackMax = maxStackSize;
                addSuccessor(stackSize, label);
            }
            // begins a new current block
            currentBlock = label;
            // resets the relative current and max stack sizes
            stackSize = 0;
            maxStackSize = 0;
            // updates the basic block list
            if (previousBlock != null) {
                previousBlock.successor = label;
            }
            previousBlock = label;
        }
    }

    public void visitLdcInsn(final Object cst) {
        Item i = cw.newConstItem(cst);
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(Opcodes.LDC, 0, cw, i);
//            } else 
            {
                int size;
                // computes the stack size variation
                if (i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE)
                {
                    size = stackSize + 2;
                } else {
                    size = stackSize + 1;
                }
                // updates current and max stack sizes
                if (size > maxStackSize) {
                    maxStackSize = size;
                }
                stackSize = size;
            }
        }
        // adds the instruction to the bytecode of the method
        int index = i.index;
        if (i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE) {
            code.put12(20 /* LDC2_W */, index);
        } else if (index >= 256) {
            code.put12(19 /* LDC_W */, index);
        } else {
            code.put11(Opcodes.LDC, index);
        }
    }

//    public void visitIincInsn(final int var, final int increment) {
//        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(Opcodes.IINC, var, null, null);
//            }
//        }
//        if (compute != NOTHING) {
//            // updates max locals
//            int n = var + 1;
//            if (n > maxLocals) {
//                maxLocals = n;
//            }
//        }
//        // adds the instruction to the bytecode of the method
//        if ((var > 255) || (increment > 127) || (increment < -128)) {
//            code.putByte(196 /* WIDE */)
//                    .put12(Opcodes.IINC, var)
//                    .putShort(increment);
//        } else {
//            code.putByte(Opcodes.IINC).put11(var, increment);
//        }
//    }

    public void visitTableSwitchInsn(
        final int min,
        final int max,
        final Label dflt,
        final Label[] labels)
    {
        // adds the instruction to the bytecode of the method
        int source = code.length;
        code.putByte(Opcodes.TABLESWITCH);
        code.putByteArray(null, 0, (4 - code.length % 4) % 4);
        dflt.put(this, code, source, true);
        code.putInt(min).putInt(max);
        for (int i = 0; i < labels.length; ++i) {
            labels[i].put(this, code, source, true);
        }
        // updates currentBlock
        visitSwitchInsn(dflt, labels);
    }

    public void visitLookupSwitchInsn(
        final Label dflt,
        final int[] keys,
        final Label[] labels)
    {
        // adds the instruction to the bytecode of the method
        int source = code.length;
        code.putByte(Opcodes.LOOKUPSWITCH);
        code.putByteArray(null, 0, (4 - code.length % 4) % 4);
        dflt.put(this, code, source, true);
        code.putInt(labels.length);
        for (int i = 0; i < labels.length; ++i) {
            code.putInt(keys[i]);
            labels[i].put(this, code, source, true);
        }
        // updates currentBlock
        visitSwitchInsn(dflt, labels);
    }

    private void visitSwitchInsn(final Label dflt, final Label[] labels) {
        // Label currentBlock = this.currentBlock;
        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(Opcodes.LOOKUPSWITCH, 0, null, null);
//                // adds current block successors
//                addSuccessor(Edge.NORMAL, dflt);
//                dflt.getFirst().status |= Label.TARGET;
//                for (int i = 0; i < labels.length; ++i) {
//                    addSuccessor(Edge.NORMAL, labels[i]);
//                    labels[i].getFirst().status |= Label.TARGET;
//                }
//            } else 
            {
                // updates current stack size (max stack size unchanged)
                --stackSize;
                // adds current block successors
                addSuccessor(stackSize, dflt);
                for (int i = 0; i < labels.length; ++i) {
                    addSuccessor(stackSize, labels[i]);
                }
            }
            // ends current block
            noSuccessor();
        }
    }

//    public void visitMultiANewArrayInsn(final String desc, final int dims) {
//        Item i = cw.newClassItem(desc);
//        // Label currentBlock = this.currentBlock;
//        if (currentBlock != null) {
//            if (compute == FRAMES) {
//                currentBlock.frame.execute(Opcodes.MULTIANEWARRAY, dims, cw, i);
//            } else {
//                // updates current stack size (max stack size unchanged because
//                // stack size variation always negative or null)
//                stackSize += 1 - dims;
//            }
//        }
//        // adds the instruction to the bytecode of the method
//        code.put12(Opcodes.MULTIANEWARRAY, i.index).putByte(dims);
//    }

//    public void visitTryCatchBlock(
//        final Label start,
//        final Label end,
//        final Label handler,
//        final String type)
//    {
//        ++handlerCount;
//        Handler h = new Handler();
//        h.start = start;
//        h.end = end;
//        h.handler = handler;
//        h.desc = type;
//        h.type = type != null ? cw.newClass(type) : 0;
//        if (lastHandler == null) {
//            firstHandler = h;
//        } else {
//            lastHandler.next = h;
//        }
//        lastHandler = h;
//    }

//    public void visitLocalVariable(
//        final String name,
//        final String desc,
//        final String signature,
//        final Label start,
//        final Label end,
//        final int index)
//    {
//        if (signature != null) {
//            if (localVarType == null) {
//                localVarType = new ByteVector();
//            }
//            ++localVarTypeCount;
//            localVarType.putShort(start.position)
//                    .putShort(end.position - start.position)
//                    .putShort(cw.newUTF8(name))
//                    .putShort(cw.newUTF8(signature))
//                    .putShort(index);
//        }
//        if (localVar == null) {
//            localVar = new ByteVector();
//        }
//        ++localVarCount;
//        localVar.putShort(start.position)
//                .putShort(end.position - start.position)
//                .putShort(cw.newUTF8(name))
//                .putShort(cw.newUTF8(desc))
//                .putShort(index);
//        if (compute != NOTHING) {
//            // updates max locals
//            char c = desc.charAt(0);
//            int n = index + (c == 'J' || c == 'D' ? 2 : 1);
//            if (n > maxLocals) {
//                maxLocals = n;
//            }
//        }
//    }

//    public void visitLineNumber(final int line, final Label start) {
//        if (lineNumber == null) {
//            lineNumber = new ByteVector();
//        }
//        ++lineNumberCount;
//        lineNumber.putShort(start.position);
//        lineNumber.putShort(line);
//    }

    public void visitMaxs(final int maxStack, final int maxLocals) {
//        if (compute == FRAMES) {
//            // completes the control flow graph with exception handler blocks
////            Handler handler = firstHandler;
////            while (handler != null) {
////                Label l = handler.start.getFirst();
////                Label h = handler.handler.getFirst();
////                Label e = handler.end.getFirst();
////                // computes the kind of the edges to 'h'
////                String t = handler.desc == null
////                        ? "java/lang/Throwable"
////                        : handler.desc;
////                int kind = Frame.OBJECT | cw.addType(t);
////                // h is an exception handler
////                h.status |= Label.TARGET;
////                // adds 'h' as a successor of labels between 'start' and 'end'
////                while (l != e) {
////                    // creates an edge to 'h'
////                    Edge b = new Edge();
////                    b.info = kind;
////                    b.successor = h;
////                    // adds it to the successors of 'l'
////                    b.next = l.successors;
////                    l.successors = b;
////                    // goes to the next label
////                    l = l.successor;
////                }
////                handler = handler.next;
////            }
//
//            // creates and visits the first (implicit) frame
//            Frame f = labels.frame;
//            Type[] args = Type.getArgumentTypes(descriptor);
//            f.initInputFrame(cw, access, args, this.maxLocals);
//            visitFrame(f);
//
//            /*
//             * fix point algorithm: mark the first basic block as 'changed'
//             * (i.e. put it in the 'changed' list) and, while there are changed
//             * basic blocks, choose one, mark it as unchanged, and update its
//             * successors (which can be changed in the process).
//             */
//            int max = 0;
//            Label changed = labels;
//            while (changed != null) {
//                // removes a basic block from the list of changed basic blocks
//                Label l = changed;
//                changed = changed.next;
//                l.next = null;
//                f = l.frame;
//                // a reachable jump target must be stored in the stack map
//                if ((l.status & Label.TARGET) != 0) {
//                    l.status |= Label.STORE;
//                }
//                // all visited labels are reachable, by definition
//                l.status |= Label.REACHABLE;
//                // updates the (absolute) maximum stack size
//                int blockMax = f.inputStack.length + l.outputStackMax;
//                if (blockMax > max) {
//                    max = blockMax;
//                }
//                // updates the successors of the current basic block
//                Edge e = l.successors;
//                while (e != null) {
//                    Label n = e.successor.getFirst();
//                    boolean change = f.merge(cw, n.frame, e.info);
//                    if (change && n.next == null) {
//                        // if n has changed and is not already in the 'changed'
//                        // list, adds it to this list
//                        n.next = changed;
//                        changed = n;
//                    }
//                    e = e.next;
//                }
//            }
//
//            // visits all the frames that must be stored in the stack map
//            Label l = labels;
//            while (l != null) {
//                f = l.frame;
//                if ((l.status & Label.STORE) != 0) {
//                    visitFrame(f);
//                }
//                if ((l.status & Label.REACHABLE) == 0) {
//                    // finds start and end of dead basic block
//                    Label k = l.successor;
//                    int start = l.position;
//                    int end = (k == null ? code.length : k.position) - 1;
//                    // if non empty basic block
//                    if (end >= start) {
//                        max = Math.max(max, 1);
//                        // replaces instructions with NOP ... NOP ATHROW
//                        for (int i = start; i < end; ++i) {
//                            code.data[i] = Opcodes.NOP;
//                        }
//                        code.data[end] = (byte) Opcodes.ATHROW;
//                        // emits a frame for this unreachable block
//                        startFrame(start, 0, 1);
//                        frame[frameIndex++] = Frame.OBJECT
//                                | cw.addType("java/lang/Throwable");
//                        endFrame();
//                    }
//                }
//                l = l.successor;
//            }
//            
//            this.maxStack = max;
//        } else 
            if (compute == MAXS) {
            // completes the control flow graph with exception handler blocks
//            Handler handler = firstHandler;
//            while (handler != null) {
//                Label l = handler.start;
//                Label h = handler.handler;
//                Label e = handler.end;
//                // adds 'h' as a successor of labels between 'start' and 'end'
//                while (l != e) {
//                    // creates an edge to 'h'
//                    Edge b = new Edge();
//                    b.info = Edge.EXCEPTION;
//                    b.successor = h;
//                    // adds it to the successors of 'l'
//                    if ((l.status & Label.JSR) == 0) {
//                        b.next = l.successors;
//                        l.successors = b;
//                    } else {
//                        // if l is a JSR block, adds b after the first two edges
//                        // to preserve the hypothesis about JSR block successors
//                        // order (see {@link #visitJumpInsn})
//                        b.next = l.successors.next.next;
//                        l.successors.next.next = b;
//                    }
//                    // goes to the next label
//                    l = l.successor;
//                }
//                handler = handler.next;
//            }

            if (subroutines > 0) {
                // completes the control flow graph with the RET successors
                /*
                 * first step: finds the subroutines. This step determines, for
                 * each basic block, to which subroutine(s) it belongs.
                 */
                // finds the basic blocks that belong to the "main" subroutine
                int id = 0;
                labels.visitSubroutine(null, 1, subroutines);
                // finds the basic blocks that belong to the real subroutines
                Label l = labels;
                while (l != null) {
                    if ((l.status & Label.JSR) != 0) {
                        // the subroutine is defined by l's TARGET, not by l
                        Label subroutine = l.successors.next.successor;
                        // if this subroutine has not been visited yet...
                        if ((subroutine.status & Label.VISITED) == 0) {
                            // ...assigns it a new id and finds its basic blocks
                            id += 1;
                            subroutine.visitSubroutine(null, (id / 32L) << 32
                                    | (1L << (id % 32)), subroutines);
                        }
                    }
                    l = l.successor;
                }
                // second step: finds the successors of RET blocks
                l = labels;
                while (l != null) {
                    if ((l.status & Label.JSR) != 0) {
                        Label L = labels;
                        while (L != null) {
                            L.status &= ~Label.VISITED2;
                            L = L.successor;
                        }
                        // the subroutine is defined by l's TARGET, not by l
                        Label subroutine = l.successors.next.successor;
                        subroutine.visitSubroutine(l, 0, subroutines);
                    }
                    l = l.successor;
                }
            }

            /*
             * control flow analysis algorithm: while the block stack is not
             * empty, pop a block from this stack, update the max stack size,
             * compute the true (non relative) begin stack size of the
             * successors of this block, and push these successors onto the
             * stack (unless they have already been pushed onto the stack).
             * Note: by hypothesis, the {@link Label#inputStackTop} of the
             * blocks in the block stack are the true (non relative) beginning
             * stack sizes of these blocks.
             */
            int max = 0;
            Label stack = labels;
            while (stack != null) {
                // pops a block from the stack
                Label l = stack;
                stack = stack.next;
                // computes the true (non relative) max stack size of this block
                int start = l.inputStackTop;
                int blockMax = start + l.outputStackMax;
                // updates the global max stack size
                if (blockMax > max) {
                    max = blockMax;
                }
                // analyzes the successors of the block
                Edge b = l.successors;
                if ((l.status & Label.JSR) != 0) {
                    // ignores the first edge of JSR blocks (virtual successor)
                    b = b.next;
                }
                while (b != null) {
                    l = b.successor;
                    // if this successor has not already been pushed...
                    if ((l.status & Label.PUSHED) == 0) {
                        // computes its true beginning stack size...
                        l.inputStackTop = b.info == Edge.EXCEPTION ? 1 : start
                                + b.info;
                        // ...and pushes it onto the stack
                        l.status |= Label.PUSHED;
                        l.next = stack;
                        stack = l;
                    }
                    b = b.next;
                }
            }
            this.maxStack = max;
        } else {
            this.maxStack = maxStack;
            this.maxLocals = maxLocals;
        }
    }

    public void visitEnd() {
    }

    // ------------------------------------------------------------------------
    // Utility methods: control flow analysis algorithm
    // ------------------------------------------------------------------------

    /**
     * Adds a successor to the {@link #currentBlock currentBlock} block.
     * 
     * @param info information about the control flow edge to be added.
     * @param successor the successor block to be added to the current block.
     */
    private void addSuccessor(final int info, final Label successor) {
        // creates and initializes an Edge object...
        Edge b = new Edge();
        b.info = info;
        b.successor = successor;
        // ...and adds it to the successor list of the currentBlock block
        b.next = currentBlock.successors;
        currentBlock.successors = b;
    }

    /**
     * Ends the current basic block. This method must be used in the case where
     * the current basic block does not have any successor.
     */
    private void noSuccessor() {
//        if (compute == FRAMES) {
//            Label l = new Label();
//            l.frame = new Frame();
//            l.frame.owner = l;
//            l.resolve(this, code.length, code.data);
//            previousBlock.successor = l;
//            previousBlock = l;
//        } else 
        {
            currentBlock.outputStackMax = maxStackSize;
        }
        currentBlock = null;
    }

    // ------------------------------------------------------------------------
    // Utility methods: stack map frames
    // ------------------------------------------------------------------------
//
//    /**
//     * Visits a frame that has been computed from scratch.
//     * 
//     * @param f the frame that must be visited.
//     */
//    private void visitFrame(final Frame f) {
//        int i, t;
//        int nTop = 0;
//        int nLocal = 0;
//        int nStack = 0;
//        int[] locals = f.inputLocals;
//        int[] stacks = f.inputStack;
//        // computes the number of locals (ignores TOP types that are just after
//        // a LONG or a DOUBLE, and all trailing TOP types)
//        for (i = 0; i < locals.length; ++i) {
//            t = locals[i];
//            if (t == Frame.TOP) {
//                ++nTop;
//            } else {
//                nLocal += nTop + 1;
//                nTop = 0;
//            }
//            if (t == Frame.LONG || t == Frame.DOUBLE) {
//                ++i;
//            }
//        }
//        // computes the stack size (ignores TOP types that are just after
//        // a LONG or a DOUBLE)
//        for (i = 0; i < stacks.length; ++i) {
//            t = stacks[i];
//            ++nStack;
//            if (t == Frame.LONG || t == Frame.DOUBLE) {
//                ++i;
//            }
//        }
//        // visits the frame and its content
//        startFrame(f.owner.position, nLocal, nStack);
//        for (i = 0; nLocal > 0; ++i, --nLocal) {
//            t = locals[i];
//            frame[frameIndex++] = t;
//            if (t == Frame.LONG || t == Frame.DOUBLE) {
//                ++i;
//            }
//        }
//        for (i = 0; i < stacks.length; ++i) {
//            t = stacks[i];
//            frame[frameIndex++] = t;
//            if (t == Frame.LONG || t == Frame.DOUBLE) {
//                ++i;
//            }
//        }
//        endFrame();
//    }
//
//    /**
//     * Starts the visit of a stack map frame.
//     * 
//     * @param offset the offset of the instruction to which the frame
//     *        corresponds.
//     * @param nLocal the number of local variables in the frame.
//     * @param nStack the number of stack elements in the frame.
//     */
//    private void startFrame(final int offset, final int nLocal, final int nStack)
//    {
//        int n = 3 + nLocal + nStack;
//        if (frame == null || frame.length < n) {
//            frame = new int[n];
//        }
//        frame[0] = offset;
//        frame[1] = nLocal;
//        frame[2] = nStack;
//        frameIndex = 3;
//    }
//
//    /**
//     * Checks if the visit of the current frame {@link #frame} is finished, and
//     * if yes, write it in the StackMapTable attribute.
//     */
//    private void endFrame() {
//        if (previousFrame != null) { // do not write the first frame
//            if (stackMap == null) {
//                stackMap = new ByteVector();
//            }
//            writeFrame();
//            ++frameCount;
//        }
//        previousFrame = frame;
//        frame = null;
//    }
//
//    /**
//     * Compress and writes the current frame {@link #frame} in the StackMapTable
//     * attribute.
//     */
//    private void writeFrame() {
//        int clocalsSize = frame[1];
//        int cstackSize = frame[2];
//        if ((cw.version & 0xFFFF) < Opcodes.V1_6) {
//            stackMap.putShort(frame[0]).putShort(clocalsSize);
//            writeFrameTypes(3, 3 + clocalsSize);
//            stackMap.putShort(cstackSize);
//            writeFrameTypes(3 + clocalsSize, 3 + clocalsSize + cstackSize);
//            return;
//        }
//        int localsSize = previousFrame[1];
//        int type = FULL_FRAME;
//        int k = 0;
//        int delta;
//        if (frameCount == 0) {
//            delta = frame[0];
//        } else {
//            delta = frame[0] - previousFrame[0] - 1;
//        }
//        if (cstackSize == 0) {
//            k = clocalsSize - localsSize;
//            switch (k) {
//                case -3:
//                case -2:
//                case -1:
//                    type = CHOP_FRAME;
//                    localsSize = clocalsSize;
//                    break;
//                case 0:
//                    type = delta < 64 ? SAME_FRAME : SAME_FRAME_EXTENDED;
//                    break;
//                case 1:
//                case 2:
//                case 3:
//                    type = APPEND_FRAME;
//                    break;
//            }
//        } else if (clocalsSize == localsSize && cstackSize == 1) {
//            type = delta < 63
//                    ? SAME_LOCALS_1_STACK_ITEM_FRAME
//                    : SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED;
//        }
//        if (type != FULL_FRAME) {
//            // verify if locals are the same
//            int l = 3;
//            for (int j = 0; j < localsSize; j++) {
//                if (frame[l] != previousFrame[l]) {
//                    type = FULL_FRAME;
//                    break;
//                }
//                l++;
//            }
//        }
//        switch (type) {
//            case SAME_FRAME:
//                stackMap.putByte(delta);
//                break;
//            case SAME_LOCALS_1_STACK_ITEM_FRAME:
//                stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME + delta);
//                writeFrameTypes(3 + clocalsSize, 4 + clocalsSize);
//                break;
//            case SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED:
//                stackMap.putByte(SAME_LOCALS_1_STACK_ITEM_FRAME_EXTENDED)
//                        .putShort(delta);
//                writeFrameTypes(3 + clocalsSize, 4 + clocalsSize);
//                break;
//            case SAME_FRAME_EXTENDED:
//                stackMap.putByte(SAME_FRAME_EXTENDED).putShort(delta);
//                break;
//            case CHOP_FRAME:
//                stackMap.putByte(SAME_FRAME_EXTENDED + k).putShort(delta);
//                break;
//            case APPEND_FRAME:
//                stackMap.putByte(SAME_FRAME_EXTENDED + k).putShort(delta);
//                writeFrameTypes(3 + localsSize, 3 + clocalsSize);
//                break;
//            // case FULL_FRAME:
//            default:
//                stackMap.putByte(FULL_FRAME)
//                        .putShort(delta)
//                        .putShort(clocalsSize);
//                writeFrameTypes(3, 3 + clocalsSize);
//                stackMap.putShort(cstackSize);
//                writeFrameTypes(3 + clocalsSize, 3 + clocalsSize + cstackSize);
//        }
//    }
//
//    /**
//     * Writes some types of the current frame {@link #frame} into the
//     * StackMapTableAttribute. This method converts types from the format used
//     * in {@link Label} to the format used in StackMapTable attributes. In
//     * particular, it converts type table indexes to constant pool indexes.
//     * 
//     * @param start index of the first type in {@link #frame} to write.
//     * @param end index of last type in {@link #frame} to write (exclusive).
//     */
//    private void writeFrameTypes(final int start, final int end) {
//        for (int i = start; i < end; ++i) {
//            int t = frame[i];
//            int d = t & Frame.DIM;
//            if (d == 0) {
//                int v = t & Frame.BASE_VALUE;
//                switch (t & Frame.BASE_KIND) {
//                    case Frame.OBJECT:
//                        stackMap.putByte(7)
//                                .putShort(cw.newClass(cw.typeTable[v].strVal1));
//                        break;
//                    case Frame.UNINITIALIZED:
//                        stackMap.putByte(8).putShort(cw.typeTable[v].intVal);
//                        break;
//                    default:
//                        stackMap.putByte(v);
//                }
//            } else {
//                StringBuilder buf = new StringBuilder();
//                d >>= 28;
//                while (d-- > 0) {
//                    buf.append('[');
//                }
//                if ((t & Frame.BASE_KIND) == Frame.OBJECT) {
//                    buf.append('L');
//                    buf.append(cw.typeTable[t & Frame.BASE_VALUE].strVal1);
//                    buf.append(';');
//                } else {
//                    switch (t & 0xF) {
//                        case 1:
//                            buf.append('I');
//                            break;
//                        case 2:
//                            buf.append('F');
//                            break;
//                        case 3:
//                            buf.append('D');
//                            break;
//                        case 9:
//                            buf.append('Z');
//                            break;
//                        case 10:
//                            buf.append('B');
//                            break;
//                        case 11:
//                            buf.append('C');
//                            break;
//                        case 12:
//                            buf.append('S');
//                            break;
//                        default:
//                            buf.append('J');
//                    }
//                }
//                stackMap.putByte(7).putShort(cw.newClass(buf.toString()));
//            }
//        }
//    }

//    private void writeFrameType(final Object type) {
//        if (type instanceof String) {
//            stackMap.putByte(7).putShort(cw.newClass((String) type));
//        } else if (type instanceof Integer) {
//            stackMap.putByte(((Integer) type).intValue());
//        } else {
//            stackMap.putByte(8).putShort(((Label) type).position);
//        }
//    }

    // ------------------------------------------------------------------------
    // Utility methods: dump bytecode array
    // ------------------------------------------------------------------------

    /**
     * Returns the size of the bytecode of this method.
     * 
     * @return the size of the bytecode of this method.
     */
    final int getSize() {

        if (resize) {
            // replaces the temporary jump opcodes introduced by Label.resolve.
                resizeInstructions();
        }
        int size = 8;
        if (code.length > 0) {
            cw.newUTF8("Code");
            size += 18 + code.length + 8 * handlerCount;
            if (localVar != null) {
                cw.newUTF8("LocalVariableTable");
                size += 8 + localVar.length;
            }
            if (localVarType != null) {
                cw.newUTF8("LocalVariableTypeTable");
                size += 8 + localVarType.length;
            }
            if (lineNumber != null) {
                cw.newUTF8("LineNumberTable");
                size += 8 + lineNumber.length;
            }
            if (stackMap != null) {
                boolean zip = (cw.version & 0xFFFF) >= Opcodes.V1_6;
                cw.newUTF8(zip ? "StackMapTable" : "StackMap");
                size += 8 + stackMap.length;
            }
        }
        if (exceptionCount > 0) {
            cw.newUTF8("Exceptions");
            size += 8 + 2 * exceptionCount;
        }
        if ((access & Opcodes.ACC_SYNTHETIC) != 0
                && ((cw.version & 0xFFFF) < Opcodes.V1_5 || (access & ClassWriter.ACC_SYNTHETIC_ATTRIBUTE) != 0))
        {
            cw.newUTF8("Synthetic");
            size += 6;
        }
        if ((access & Opcodes.ACC_DEPRECATED) != 0) {
            cw.newUTF8("Deprecated");
            size += 6;
        }
        if (signature != null) {
            cw.newUTF8("Signature");
            cw.newUTF8(signature);
            size += 8;
        }
        return size;
    }

    /**
     * Puts the bytecode of this method in the given byte vector.
     * 
     * @param out the byte vector into which the bytecode of this method must be
     *        copied.
     */
    final void put(final ByteVector out) {
        int mask = Opcodes.ACC_DEPRECATED
                | ClassWriter.ACC_SYNTHETIC_ATTRIBUTE
                | ((access & ClassWriter.ACC_SYNTHETIC_ATTRIBUTE) / (ClassWriter.ACC_SYNTHETIC_ATTRIBUTE / Opcodes.ACC_SYNTHETIC));
        out.putShort(access & ~mask).putShort(name).putShort(desc);
        int attributeCount = 0;
        if (code.length > 0) {
            ++attributeCount;
        }
        if (exceptionCount > 0) {
            ++attributeCount;
        }
        if ((access & Opcodes.ACC_SYNTHETIC) != 0
                && ((cw.version & 0xFFFF) < Opcodes.V1_5 || (access & ClassWriter.ACC_SYNTHETIC_ATTRIBUTE) != 0))
        {
            ++attributeCount;
        }
        if ((access & Opcodes.ACC_DEPRECATED) != 0) {
            ++attributeCount;
        }
        if (signature != null) {
            ++attributeCount;
        }
        out.putShort(attributeCount);
        if (code.length > 0) {
            int size = 12 + code.length + 8 * handlerCount;
            if (localVar != null) {
                size += 8 + localVar.length;
            }
            if (localVarType != null) {
                size += 8 + localVarType.length;
            }
            if (lineNumber != null) {
                size += 8 + lineNumber.length;
            }
            if (stackMap != null) {
                size += 8 + stackMap.length;
            }
            out.putShort(cw.newUTF8("Code")).putInt(size);
            out.putShort(maxStack).putShort(maxLocals);
            out.putInt(code.length).putByteArray(code.data, 0, code.length);
            out.putShort(handlerCount);
//            if (handlerCount > 0) {
//                Handler h = firstHandler;
//                while (h != null) {
//                    out.putShort(h.start.position)
//                            .putShort(h.end.position)
//                            .putShort(h.handler.position)
//                            .putShort(h.type);
//                    h = h.next;
//                }
//            }
            attributeCount = 0;
            if (localVar != null) {
                ++attributeCount;
            }
            if (localVarType != null) {
                ++attributeCount;
            }
            if (lineNumber != null) {
                ++attributeCount;
            }
            if (stackMap != null) {
                ++attributeCount;
            }
            out.putShort(attributeCount);
            if (localVar != null) {
                out.putShort(cw.newUTF8("LocalVariableTable"));
                out.putInt(localVar.length + 2).putShort(localVarCount);
                out.putByteArray(localVar.data, 0, localVar.length);
            }
            if (localVarType != null) {
                out.putShort(cw.newUTF8("LocalVariableTypeTable"));
                out.putInt(localVarType.length + 2).putShort(localVarTypeCount);
                out.putByteArray(localVarType.data, 0, localVarType.length);
            }
            if (lineNumber != null) {
                out.putShort(cw.newUTF8("LineNumberTable"));
                out.putInt(lineNumber.length + 2).putShort(lineNumberCount);
                out.putByteArray(lineNumber.data, 0, lineNumber.length);
            }
            if (stackMap != null) {
                boolean zip = (cw.version & 0xFFFF) >= Opcodes.V1_6;
                out.putShort(cw.newUTF8(zip ? "StackMapTable" : "StackMap"));
                out.putInt(stackMap.length + 2).putShort(frameCount);
                out.putByteArray(stackMap.data, 0, stackMap.length);
            }
        }
        if (exceptionCount > 0) {
            out.putShort(cw.newUTF8("Exceptions"))
                    .putInt(2 * exceptionCount + 2);
            out.putShort(exceptionCount);
            for (int i = 0; i < exceptionCount; ++i) {
                out.putShort(exceptions[i]);
            }
        }
        if ((access & Opcodes.ACC_SYNTHETIC) != 0
                && ((cw.version & 0xFFFF) < Opcodes.V1_5 || (access & ClassWriter.ACC_SYNTHETIC_ATTRIBUTE) != 0))
        {
            out.putShort(cw.newUTF8("Synthetic")).putInt(0);
        }
        if ((access & Opcodes.ACC_DEPRECATED) != 0) {
            out.putShort(cw.newUTF8("Deprecated")).putInt(0);
        }
        if (signature != null) {
            out.putShort(cw.newUTF8("Signature"))
                    .putInt(2)
                    .putShort(cw.newUTF8(signature));
        }
    }

    // ------------------------------------------------------------------------
    // Utility methods: instruction resizing (used to handle GOTO_W and JSR_W)
    // ------------------------------------------------------------------------

    /**
     * Resizes and replaces the temporary instructions inserted by
     * {@link Label#resolve} for wide forward jumps, while keeping jump offsets
     * and instruction addresses consistent. This may require to resize other
     * existing instructions, or even to introduce new instructions: for
     * example, increasing the size of an instruction by 2 at the middle of a
     * method can increases the offset of an IFEQ instruction from 32766 to
     * 32768, in which case IFEQ 32766 must be replaced with IFNEQ 8 GOTO_W
     * 32765. This, in turn, may require to increase the size of another jump
     * instruction, and so on... All these operations are handled automatically
     * by this method. 

This method must be called after all the method * that is being built has been visited. In particular, the * {@link Label Label} objects used to construct the method are no longer * valid after this method has been called. */ private void resizeInstructions() { byte[] b = code.data; // bytecode of the method int u, v, label; // indexes in b int i, j; // loop indexes /* * 1st step: As explained above, resizing an instruction may require to * resize another one, which may require to resize yet another one, and * so on. The first step of the algorithm consists in finding all the * instructions that need to be resized, without modifying the code. * This is done by the following "fix point" algorithm: * * Parse the code to find the jump instructions whose offset will need * more than 2 bytes to be stored (the future offset is computed from * the current offset and from the number of bytes that will be inserted * or removed between the source and target instructions). For each such * instruction, adds an entry in (a copy of) the indexes and sizes * arrays (if this has not already been done in a previous iteration!). * * If at least one entry has been added during the previous step, go * back to the beginning, otherwise stop. * * In fact the real algorithm is complicated by the fact that the size * of TABLESWITCH and LOOKUPSWITCH instructions depends on their * position in the bytecode (because of padding). In order to ensure the * convergence of the algorithm, the number of bytes to be added or * removed from these instructions is over estimated during the previous * loop, and computed exactly only after the loop is finished (this * requires another pass to parse the bytecode of the method). */ int[] allIndexes = new int[0]; // copy of indexes int[] allSizes = new int[0]; // copy of sizes boolean[] resize; // instructions to be resized int newOffset; // future offset of a jump instruction resize = new boolean[code.length]; // 3 = loop again, 2 = loop ended, 1 = last pass, 0 = done int state = 3; do { if (state == 3) { state = 2; } u = 0; while (u < b.length) { int opcode = b[u] & 0xFF; // opcode of current instruction int insert = 0; // bytes to be added after this instruction switch (ClassWriter.TYPE[opcode]) { case ClassWriter.NOARG_INSN: case ClassWriter.IMPLVAR_INSN: u += 1; break; case ClassWriter.LABEL_INSN: if (opcode > 201) { // converts temporary opcodes 202 to 217, 218 and // 219 to IFEQ ... JSR (inclusive), IFNULL and // IFNONNULL opcode = opcode < 218 ? opcode - 49 : opcode - 20; label = u + readUnsignedShort(b, u + 1); } else { label = u + readShort(b, u + 1); } newOffset = getNewOffset(allIndexes, allSizes, u, label); if (newOffset < Short.MIN_VALUE || newOffset > Short.MAX_VALUE) { if (!resize[u]) { if (opcode == Opcodes.GOTO || opcode == Opcodes.JSR) { // two additional bytes will be required to // replace this GOTO or JSR instruction with // a GOTO_W or a JSR_W insert = 2; } else { // five additional bytes will be required to // replace this IFxxx instruction with // IFNOTxxx GOTO_W , where IFNOTxxx // is the "opposite" opcode of IFxxx (i.e., // IFNE for IFEQ) and where designates // the instruction just after the GOTO_W. insert = 5; } resize[u] = true; } } u += 3; break; case ClassWriter.LABELW_INSN: u += 5; break; case ClassWriter.TABL_INSN: if (state == 1) { // true number of bytes to be added (or removed) // from this instruction = (future number of padding // bytes - current number of padding byte) - // previously over estimated variation = // = ((3 - newOffset%4) - (3 - u%4)) - u%4 // = (-newOffset%4 + u%4) - u%4 // = -(newOffset & 3) newOffset = getNewOffset(allIndexes, allSizes, 0, u); insert = -(newOffset & 3); } else if (!resize[u]) { // over estimation of the number of bytes to be // added to this instruction = 3 - current number // of padding bytes = 3 - (3 - u%4) = u%4 = u & 3 insert = u & 3; resize[u] = true; } // skips instruction u = u + 4 - (u & 3); u += 4 * (readInt(b, u + 8) - readInt(b, u + 4) + 1) + 12; break; case ClassWriter.LOOK_INSN: if (state == 1) { // like TABL_INSN newOffset = getNewOffset(allIndexes, allSizes, 0, u); insert = -(newOffset & 3); } else if (!resize[u]) { // like TABL_INSN insert = u & 3; resize[u] = true; } // skips instruction u = u + 4 - (u & 3); u += 8 * readInt(b, u + 4) + 8; break; case ClassWriter.WIDE_INSN: opcode = b[u + 1] & 0xFF; if (opcode == Opcodes.IINC) { u += 6; } else { u += 4; } break; case ClassWriter.VAR_INSN: case ClassWriter.SBYTE_INSN: case ClassWriter.LDC_INSN: u += 2; break; case ClassWriter.SHORT_INSN: case ClassWriter.LDCW_INSN: case ClassWriter.FIELDORMETH_INSN: case ClassWriter.TYPE_INSN: case ClassWriter.IINC_INSN: u += 3; break; case ClassWriter.ITFDYNMETH_INSN: u += 5; break; // case ClassWriter.MANA_INSN: default: u += 4; break; } if (insert != 0) { // adds a new (u, insert) entry in the allIndexes and // allSizes arrays int[] newIndexes = new int[allIndexes.length + 1]; int[] newSizes = new int[allSizes.length + 1]; System.arraycopy(allIndexes, 0, newIndexes, 0, allIndexes.length); System.arraycopy(allSizes, 0, newSizes, 0, allSizes.length); newIndexes[allIndexes.length] = u; newSizes[allSizes.length] = insert; allIndexes = newIndexes; allSizes = newSizes; if (insert > 0) { state = 3; } } } if (state < 3) { --state; } } while (state != 0); // 2nd step: // copies the bytecode of the method into a new bytevector, updates the // offsets, and inserts (or removes) bytes as requested. ByteVector newCode = new ByteVector(code.length); u = 0; while (u < code.length) { int opcode = b[u] & 0xFF; switch (ClassWriter.TYPE[opcode]) { case ClassWriter.NOARG_INSN: case ClassWriter.IMPLVAR_INSN: newCode.putByte(opcode); u += 1; break; case ClassWriter.LABEL_INSN: if (opcode > 201) { // changes temporary opcodes 202 to 217 (inclusive), 218 // and 219 to IFEQ ... JSR (inclusive), IFNULL and // IFNONNULL opcode = opcode < 218 ? opcode - 49 : opcode - 20; label = u + readUnsignedShort(b, u + 1); } else { label = u + readShort(b, u + 1); } newOffset = getNewOffset(allIndexes, allSizes, u, label); if (resize[u]) { // replaces GOTO with GOTO_W, JSR with JSR_W and IFxxx // with IFNOTxxx GOTO_W , where IFNOTxxx is // the "opposite" opcode of IFxxx (i.e., IFNE for IFEQ) // and where designates the instruction just after // the GOTO_W. if (opcode == Opcodes.GOTO) { newCode.putByte(200); // GOTO_W } else if (opcode == Opcodes.JSR) { newCode.putByte(201); // JSR_W } else { newCode.putByte(opcode <= 166 ? ((opcode + 1) ^ 1) - 1 : opcode ^ 1); newCode.putShort(8); // jump offset newCode.putByte(200); // GOTO_W // newOffset now computed from start of GOTO_W newOffset -= 3; } newCode.putInt(newOffset); } else { newCode.putByte(opcode); newCode.putShort(newOffset); } u += 3; break; case ClassWriter.LABELW_INSN: label = u + readInt(b, u + 1); newOffset = getNewOffset(allIndexes, allSizes, u, label); newCode.putByte(opcode); newCode.putInt(newOffset); u += 5; break; case ClassWriter.TABL_INSN: // skips 0 to 3 padding bytes v = u; u = u + 4 - (v & 3); // reads and copies instruction newCode.putByte(Opcodes.TABLESWITCH); newCode.putByteArray(null, 0, (4 - newCode.length % 4) % 4); label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); j = readInt(b, u); u += 4; newCode.putInt(j); j = readInt(b, u) - j + 1; u += 4; newCode.putInt(readInt(b, u - 4)); for (; j > 0; --j) { label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); } break; case ClassWriter.LOOK_INSN: // skips 0 to 3 padding bytes v = u; u = u + 4 - (v & 3); // reads and copies instruction newCode.putByte(Opcodes.LOOKUPSWITCH); newCode.putByteArray(null, 0, (4 - newCode.length % 4) % 4); label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); j = readInt(b, u); u += 4; newCode.putInt(j); for (; j > 0; --j) { newCode.putInt(readInt(b, u)); u += 4; label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); } break; case ClassWriter.WIDE_INSN: opcode = b[u + 1] & 0xFF; if (opcode == Opcodes.IINC) { newCode.putByteArray(b, u, 6); u += 6; } else { newCode.putByteArray(b, u, 4); u += 4; } break; case ClassWriter.VAR_INSN: case ClassWriter.SBYTE_INSN: case ClassWriter.LDC_INSN: newCode.putByteArray(b, u, 2); u += 2; break; case ClassWriter.SHORT_INSN: case ClassWriter.LDCW_INSN: case ClassWriter.FIELDORMETH_INSN: case ClassWriter.TYPE_INSN: case ClassWriter.IINC_INSN: newCode.putByteArray(b, u, 3); u += 3; break; case ClassWriter.ITFDYNMETH_INSN: newCode.putByteArray(b, u, 5); u += 5; break; // case MANA_INSN: default: newCode.putByteArray(b, u, 4); u += 4; break; } } // //recomputes the stack map frames // if (frameCount > 0) { // if (compute == FRAMES) { // frameCount = 0; // stackMap = null; // previousFrame = null; // frame = null; // Frame f = new Frame(); // f.owner = labels; // Type[] args = Type.getArgumentTypes(descriptor); // f.initInputFrame(cw, access, args, maxLocals); // visitFrame(f); // Label l = labels; // while (l != null) { // /* // * here we need the original label position. getNewOffset // * must therefore never have been called for this label. // */ // u = l.position - 3; // if ((l.status & Label.STORE) != 0 || (u >= 0 && resize[u])) // { // getNewOffset(allIndexes, allSizes, l); // // TO DO update offsets in UNINITIALIZED values // visitFrame(l.frame); // } // l = l.successor; // } // } else // { // /* // * Resizing an existing stack map frame table is really hard. // * Not only the table must be parsed to update the offets, but // * new frames may be needed for jump instructions that were // * inserted by this method. And updating the offsets or // * inserting frames can change the format of the following // * frames, in case of packed frames. In practice the whole table // * must be recomputed. For this the frames are marked as // * potentially invalid. This will cause the whole class to be // * reread and rewritten with the COMPUTE_FRAMES option (see the // * ClassWriter.toByteArray method). This is not very efficient // * but is much easier and requires much less code than any other // * method I can think of. // */ // cw.invalidFrames = true; // } // } // updates the exception handler block labels // Handler h = firstHandler; // while (h != null) { // getNewOffset(allIndexes, allSizes, h.start); // getNewOffset(allIndexes, allSizes, h.end); // getNewOffset(allIndexes, allSizes, h.handler); // h = h.next; // } // updates the instructions addresses in the // local var and line number tables for (i = 0; i < 2; ++i) { ByteVector bv = i == 0 ? localVar : localVarType; if (bv != null) { b = bv.data; u = 0; while (u < bv.length) { label = readUnsignedShort(b, u); newOffset = getNewOffset(allIndexes, allSizes, 0, label); writeShort(b, u, newOffset); label += readUnsignedShort(b, u + 2); newOffset = getNewOffset(allIndexes, allSizes, 0, label) - newOffset; writeShort(b, u + 2, newOffset); u += 10; } } } if (lineNumber != null) { b = lineNumber.data; u = 0; while (u < lineNumber.length) { writeShort(b, u, getNewOffset(allIndexes, allSizes, 0, readUnsignedShort(b, u))); u += 4; } } // replaces old bytecodes with new ones code = newCode; } /** * Reads an unsigned short value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static int readUnsignedShort(final byte[] b, final int index) { return ((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF); } /** * Reads a signed short value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static short readShort(final byte[] b, final int index) { return (short) (((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF)); } /** * Reads a signed int value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static int readInt(final byte[] b, final int index) { return ((b[index] & 0xFF) << 24) | ((b[index + 1] & 0xFF) << 16) | ((b[index + 2] & 0xFF) << 8) | (b[index + 3] & 0xFF); } /** * Writes a short value in the given byte array. * * @param b a byte array. * @param index where the first byte of the short value must be written. * @param s the value to be written in the given byte array. */ static void writeShort(final byte[] b, final int index, final int s) { b[index] = (byte) (s >>> 8); b[index + 1] = (byte) s; } /** * Computes the future value of a bytecode offset.

Note: it is possible * to have several entries for the same instruction in the indexes * and sizes: two entries (index=a,size=b) and (index=a,size=b') * are equivalent to a single entry (index=a,size=b+b'). * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its last * byte, plus one (or, in other words, by the index of the first * byte of the next instruction). * @param sizes the number of bytes to be added to the above * instructions. More precisely, for each i < len, * sizes[i] bytes will be added at the end of the * instruction designated by indexes[i] or, if * sizes[i] is negative, the last |sizes[i]| * bytes of the instruction will be removed (the instruction size * must not become negative or null). * @param begin index of the first byte of the source instruction. * @param end index of the first byte of the target instruction. * @return the future value of the given bytecode offset. */ static int getNewOffset( final int[] indexes, final int[] sizes, final int begin, final int end) { int offset = end - begin; for (int i = 0; i < indexes.length; ++i) { if (begin < indexes[i] && indexes[i] <= end) { // forward jump offset += sizes[i]; } else if (end < indexes[i] && indexes[i] <= begin) { // backward jump offset -= sizes[i]; } } return offset; } /** * Updates the offset of the given label. * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its last * byte, plus one (or, in other words, by the index of the first * byte of the next instruction). * @param sizes the number of bytes to be added to the above * instructions. More precisely, for each i < len, * sizes[i] bytes will be added at the end of the * instruction designated by indexes[i] or, if * sizes[i] is negative, the last |sizes[i]| * bytes of the instruction will be removed (the instruction size * must not become negative or null). * @param label the label whose offset must be updated. */ static void getNewOffset( final int[] indexes, final int[] sizes, final Label label) { if ((label.status & Label.RESIZED) == 0) { label.position = getNewOffset(indexes, sizes, 0, label.position); label.status |= Label.RESIZED; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy