All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.text.Collator Maven / Gradle / Ivy

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package java.text;

import java.util.Comparator;
import java.util.Locale;
import libcore.icu.ICU;
import libcore.icu.RuleBasedCollatorICU;

/**
 * Performs locale-sensitive string comparison. A concrete subclass,
 * {@link RuleBasedCollator}, allows customization of the collation ordering by
 * the use of rule sets.
 * 

* Following the Unicode Consortium's * specifications for the Unicode Collation * Algorithm (UCA), there are 4 different levels of strength used in * comparisons: *

    *
  • PRIMARY strength: Typically, this is used to denote differences between * base characters (for example, "a" < "b"). It is the strongest difference. * For example, dictionaries are divided into different sections by base * character. *
  • SECONDARY strength: Accents in the characters are considered secondary * differences (for example, "as" < "às" < "at"). Other differences * between letters can also be considered secondary differences, depending on * the language. A secondary difference is ignored when there is a primary * difference anywhere in the strings. *
  • TERTIARY strength: Upper and lower case differences in characters are * distinguished at tertiary strength (for example, "ao" < "Ao" < * "aò"). In addition, a variant of a letter differs from the base form * on the tertiary strength (such as "A" and "Ⓐ"). Another example is the * difference between large and small Kana. A tertiary difference is ignored * when there is a primary or secondary difference anywhere in the strings. *
  • IDENTICAL strength: When all other strengths are equal, the IDENTICAL * strength is used as a tiebreaker. The Unicode code point values of the NFD * form of each string are compared, just in case there is no difference. For * example, Hebrew cantellation marks are only distinguished at this strength. * This strength should be used sparingly, as only code point value differences * between two strings are an extremely rare occurrence. Using this strength * substantially decreases the performance for both comparison and collation key * generation APIs. This strength also increases the size of the collation key. *
*

* This {@code Collator} deals only with two decomposition modes, the canonical * decomposition mode and one that does not use any decomposition. The * compatibility decomposition mode * {@code java.text.Collator.FULL_DECOMPOSITION} is not supported here. If the * canonical decomposition mode is set, {@code Collator} handles un-normalized * text properly, producing the same results as if the text were normalized in * NFD. If canonical decomposition is turned off, it is the user's * responsibility to ensure that all text is already in the appropriate form * before performing a comparison or before getting a {@link CollationKey}. *

* Examples: *

* *
 * // Get the Collator for US English and set its strength to PRIMARY
 * Collator usCollator = Collator.getInstance(Locale.US);
 * usCollator.setStrength(Collator.PRIMARY);
 * if (usCollator.compare("abc", "ABC") == 0) {
 *     System.out.println("Strings are equivalent");
 * }
 * 
* *
*

* The following example shows how to compare two strings using the collator for * the default locale. *

* *
 * // Compare two strings in the default locale
 * Collator myCollator = Collator.getInstance();
 * myCollator.setDecomposition(Collator.NO_DECOMPOSITION);
 * if (myCollator.compare("\u00e0\u0325", "a\u0325\u0300") != 0) {
 *     System.out.println("\u00e0\u0325 is not equal to a\u0325\u0300 without decomposition");
 *     myCollator.setDecomposition(Collator.CANONICAL_DECOMPOSITION);
 *     if (myCollator.compare("\u00e0\u0325", "a\u0325\u0300") != 0) {
 *         System.out.println("Error: \u00e0\u0325 should be equal to a\u0325\u0300 with decomposition");
 *     } else {
 *         System.out.println("\u00e0\u0325 is equal to a\u0325\u0300 with decomposition");
 *     }
 * } else {
 *     System.out.println("Error: \u00e0\u0325 should be not equal to a\u0325\u0300 without decomposition");
 * }
 * 
* *
* * @see RuleBasedCollator * @see CollationKey */ public abstract class Collator implements Comparator, Cloneable { /** * Constant used to specify the decomposition rule. */ public static final int NO_DECOMPOSITION = 0; /** * Constant used to specify the decomposition rule. */ public static final int CANONICAL_DECOMPOSITION = 1; /** * Constant used to specify the decomposition rule. This value for * decomposition is not supported. */ public static final int FULL_DECOMPOSITION = 2; /** * Constant used to specify the collation strength. */ public static final int PRIMARY = 0; /** * Constant used to specify the collation strength. */ public static final int SECONDARY = 1; /** * Constant used to specify the collation strength. */ public static final int TERTIARY = 2; /** * Constant used to specify the collation strength. */ public static final int IDENTICAL = 3; RuleBasedCollatorICU icuColl; Collator(RuleBasedCollatorICU icuColl) { this.icuColl = icuColl; } /** * Constructs a new {@code Collator} instance. */ protected Collator() { icuColl = new RuleBasedCollatorICU(Locale.getDefault()); } /** * Returns a new collator with the same decomposition mode and * strength value as this collator. * * @return a shallow copy of this collator. * @see java.lang.Cloneable */ @Override public Object clone() { try { Collator clone = (Collator) super.clone(); clone.icuColl = (RuleBasedCollatorICU) icuColl.clone(); return clone; } catch (CloneNotSupportedException e) { throw new AssertionError(e); } } /** * Compares two objects to determine their relative order. The objects must * be strings. * * @param object1 * the first string to compare. * @param object2 * the second string to compare. * @return a negative value if {@code object1} is less than {@code object2}, * 0 if they are equal, and a positive value if {@code object1} is * greater than {@code object2}. * @throws ClassCastException * if {@code object1} or {@code object2} is not a {@code String}. */ public int compare(Object object1, Object object2) { return compare((String) object1, (String) object2); } /** * Compares two strings to determine their relative order. * * @param string1 * the first string to compare. * @param string2 * the second string to compare. * @return a negative value if {@code string1} is less than {@code string2}, * 0 if they are equal and a positive value if {@code string1} is * greater than {@code string2}. */ public abstract int compare(String string1, String string2); /** * Compares this collator with the specified object and indicates if they * are equal. * * @param object * the object to compare with this object. * @return {@code true} if {@code object} is a {@code Collator} object and * it has the same strength and decomposition values as this * collator; {@code false} otherwise. * @see #hashCode */ @Override public boolean equals(Object object) { if (!(object instanceof Collator)) { return false; } Collator collator = (Collator) object; return icuColl == null ? collator.icuColl == null : icuColl.equals(collator.icuColl); } /** * Compares two strings using the collation rules to determine if they are * equal. * * @param string1 * the first string to compare. * @param string2 * the second string to compare. * @return {@code true} if {@code string1} and {@code string2} are equal * using the collation rules, false otherwise. */ public boolean equals(String string1, String string2) { return compare(string1, string2) == 0; } /** * Returns an array of locales for which custom {@code Collator} instances * are available. *

Note that Android does not support user-supplied locale service providers. */ public static Locale[] getAvailableLocales() { return ICU.getAvailableCollatorLocales(); } /** * Returns a {@link CollationKey} for the specified string for this collator * with the current decomposition rule and strength value. * * @param string * the source string that is converted into a collation key. * @return the collation key for {@code string}. */ public abstract CollationKey getCollationKey(String string); /** * Returns the decomposition rule for this collator. * * @return the decomposition rule, either {@code NO_DECOMPOSITION} or * {@code CANONICAL_DECOMPOSITION}. {@code FULL_DECOMPOSITION} is * not supported. */ public int getDecomposition() { return decompositionMode_ICU_Java(icuColl.getDecomposition()); } /** * Returns a {@code Collator} instance which is appropriate for the user's default * {@code Locale}. * See "Be wary of the default locale". */ public static Collator getInstance() { return getInstance(Locale.getDefault()); } /** * Returns a {@code Collator} instance which is appropriate for {@code locale}. */ public static Collator getInstance(Locale locale) { if (locale == null) { throw new NullPointerException("locale == null"); } return new RuleBasedCollator(new RuleBasedCollatorICU(locale)); } /** * Returns the strength value for this collator. * * @return the strength value, either PRIMARY, SECONDARY, TERTIARY or * IDENTICAL. */ public int getStrength() { return strength_ICU_Java(icuColl.getStrength()); } @Override public abstract int hashCode(); /** * Sets the decomposition rule for this collator. * * @param value * the decomposition rule, either {@code NO_DECOMPOSITION} or * {@code CANONICAL_DECOMPOSITION}. {@code FULL_DECOMPOSITION} * is not supported. * @throws IllegalArgumentException * if the provided decomposition rule is not valid. This includes * {@code FULL_DECOMPOSITION}. */ public void setDecomposition(int value) { icuColl.setDecomposition(decompositionMode_Java_ICU(value)); } /** * Sets the strength value for this collator. * * @param value * the strength value, either PRIMARY, SECONDARY, TERTIARY, or * IDENTICAL. * @throws IllegalArgumentException * if the provided strength value is not valid. */ public void setStrength(int value) { icuColl.setStrength(strength_Java_ICU(value)); } private int decompositionMode_Java_ICU(int mode) { switch (mode) { case Collator.CANONICAL_DECOMPOSITION: return RuleBasedCollatorICU.VALUE_ON; case Collator.NO_DECOMPOSITION: return RuleBasedCollatorICU.VALUE_OFF; } throw new IllegalArgumentException("Bad mode: " + mode); } private int decompositionMode_ICU_Java(int mode) { int javaMode = mode; switch (mode) { case RuleBasedCollatorICU.VALUE_OFF: javaMode = Collator.NO_DECOMPOSITION; break; case RuleBasedCollatorICU.VALUE_ON: javaMode = Collator.CANONICAL_DECOMPOSITION; break; } return javaMode; } private int strength_Java_ICU(int value) { switch (value) { case Collator.PRIMARY: return RuleBasedCollatorICU.VALUE_PRIMARY; case Collator.SECONDARY: return RuleBasedCollatorICU.VALUE_SECONDARY; case Collator.TERTIARY: return RuleBasedCollatorICU.VALUE_TERTIARY; case Collator.IDENTICAL: return RuleBasedCollatorICU.VALUE_IDENTICAL; } throw new IllegalArgumentException("Bad strength: " + value); } private int strength_ICU_Java(int value) { int javaValue = value; switch (value) { case RuleBasedCollatorICU.VALUE_PRIMARY: javaValue = Collator.PRIMARY; break; case RuleBasedCollatorICU.VALUE_SECONDARY: javaValue = Collator.SECONDARY; break; case RuleBasedCollatorICU.VALUE_TERTIARY: javaValue = Collator.TERTIARY; break; case RuleBasedCollatorICU.VALUE_IDENTICAL: javaValue = Collator.IDENTICAL; break; } return javaValue; } }