com.gs.fw.common.mithra.notification.server.LinkedBlockingDeque Maven / Gradle / Ivy
Show all versions of reladomo Show documentation
/*
Copyright 2016 Goldman Sachs.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.
*/
package com.gs.fw.common.mithra.notification.server;
/*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.concurrent.BlockingDeque;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
/**
* An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
* linked nodes.
*
* The optional capacity bound constructor argument serves as a
* way to prevent excessive expansion. The capacity, if unspecified,
* is equal to {@link Integer#MAX_VALUE}. Linked nodes are
* dynamically created upon each insertion unless this would bring the
* deque above capacity.
*
*
Most operations run in constant time (ignoring time spent
* blocking). Exceptions include {@link #remove(Object) remove},
* {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
* #removeLastOccurrence removeLastOccurrence}, {@link #contains
* contains}, {@link #iterator iterator.remove()}, and the bulk
* operations, all of which run in linear time.
*
*
This class and its iterator implement all of the
* optional methods of the {@link Collection} and {@link
* Iterator} interfaces.
*
*
This class is a member of the
*
* Java Collections Framework.
*
* @since 1.6
* @author Doug Lea
* @param the type of elements held in this collection
*/
public class LinkedBlockingDeque
extends AbstractQueue
implements BlockingDeque, java.io.Serializable {
/*
* Implemented as a simple doubly-linked list protected by a
* single lock and using conditions to manage blocking.
*
* To implement weakly consistent iterators, it appears we need to
* keep all Nodes GC-reachable from a predecessor dequeued Node.
* That would cause two problems:
* - allow a rogue Iterator to cause unbounded memory retention
* - cause cross-generational linking of old Nodes to new Nodes if
* a Node was tenured while live, which generational GCs have a
* hard time dealing with, causing repeated major collections.
* However, only non-deleted Nodes need to be reachable from
* dequeued Nodes, and reachability does not necessarily have to
* be of the kind understood by the GC. We use the trick of
* linking a Node that has just been dequeued to itself. Such a
* self-link implicitly means to jump to "first" (for next links)
* or "last" (for prev links).
*/
/*
* We have "diamond" multiple interface/abstract class inheritance
* here, and that introduces ambiguities. Often we want the
* BlockingDeque javadoc combined with the AbstractQueue
* implementation, so a lot of method specs are duplicated here.
*/
private static final long serialVersionUID = -387911632671998426L;
/** Doubly-linked list node class */
static final class Node {
/**
* The item, or null if this node has been removed.
*/
E item;
/**
* One of:
* - the real predecessor Node
* - this Node, meaning the predecessor is tail
* - null, meaning there is no predecessor
*/
Node prev;
/**
* One of:
* - the real successor Node
* - this Node, meaning the successor is head
* - null, meaning there is no successor
*/
Node next;
Node(E x) {
item = x;
}
}
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node first;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node last;
/** Number of items in the deque */
private transient int count;
/** Maximum number of items in the deque */
private final int capacity;
/** Main lock guarding all access */
final ReentrantLock lock = new ReentrantLock();
/** Condition for waiting takes */
private final Condition notEmpty = lock.newCondition();
/** Condition for waiting puts */
private final Condition notFull = lock.newCondition();
/**
* Creates a {@code LinkedBlockingDeque} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingDeque() {
this(Integer.MAX_VALUE);
}
/**
* Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
*
* @param capacity the capacity of this deque
* @throws IllegalArgumentException if {@code capacity} is less than 1
*/
public LinkedBlockingDeque(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
}
/**
* Creates a {@code LinkedBlockingDeque} with a capacity of
* {@link Integer#MAX_VALUE}, initially containing the elements of
* the given collection, added in traversal order of the
* collection's iterator.
*
* @param c the collection of elements to initially contain
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public LinkedBlockingDeque(Collection extends E> c) {
this(Integer.MAX_VALUE);
final ReentrantLock lock = this.lock;
lock.lock(); // Never contended, but necessary for visibility
try {
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (!linkLast(new Node(e)))
throw new IllegalStateException("Deque full");
}
} finally {
lock.unlock();
}
}
// Basic linking and unlinking operations, called only while holding lock
/**
* Links node as first element, or returns false if full.
*/
private boolean linkFirst(Node node) {
// assert lock.isHeldByCurrentThread();
if (count >= capacity)
return false;
Node f = first;
node.next = f;
first = node;
if (last == null)
last = node;
else
f.prev = node;
++count;
notEmpty.signal();
return true;
}
/**
* Links node as last element, or returns false if full.
*/
private boolean linkLast(Node node) {
// assert lock.isHeldByCurrentThread();
if (count >= capacity)
return false;
Node l = last;
node.prev = l;
last = node;
if (first == null)
first = node;
else
l.next = node;
++count;
notEmpty.signal();
return true;
}
/**
* Removes and returns first element, or null if empty.
*/
private E unlinkFirst() {
// assert lock.isHeldByCurrentThread();
Node f = first;
if (f == null)
return null;
Node n = f.next;
E item = f.item;
f.item = null;
f.next = f; // help GC
first = n;
if (n == null)
last = null;
else
n.prev = null;
--count;
notFull.signal();
return item;
}
/**
* Removes and returns last element, or null if empty.
*/
private E unlinkLast() {
// assert lock.isHeldByCurrentThread();
Node l = last;
if (l == null)
return null;
Node p = l.prev;
E item = l.item;
l.item = null;
l.prev = l; // help GC
last = p;
if (p == null)
first = null;
else
p.next = null;
--count;
notFull.signal();
return item;
}
/**
* Unlinks x.
*/
void unlink(Node x) {
// assert lock.isHeldByCurrentThread();
Node p = x.prev;
Node n = x.next;
if (p == null) {
unlinkFirst();
} else if (n == null) {
unlinkLast();
} else {
p.next = n;
n.prev = p;
x.item = null;
// Don't mess with x's links. They may still be in use by
// an iterator.
--count;
notFull.signal();
}
}
// BlockingDeque methods
/**
* @throws IllegalStateException if this deque is full
* @throws NullPointerException {@inheritDoc}
*/
public void addFirst(E e) {
if (!offerFirst(e))
throw new IllegalStateException("Deque full");
}
/**
* @throws IllegalStateException if this deque is full
* @throws NullPointerException {@inheritDoc}
*/
public void addLast(E e) {
if (!offerLast(e))
throw new IllegalStateException("Deque full");
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerFirst(E e) {
if (e == null) throw new NullPointerException();
Node node = new Node(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
return linkFirst(node);
} finally {
lock.unlock();
}
}
public boolean addAllFirst(LinkedBlockingDeque c)
{
lock.lock();
boolean modified = false;
try {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
Iterator extends E> e = c.descendingIterator();
while (e.hasNext()) {
if (this.linkFirst(new Node(e.next())))
modified = true;
}
} finally {
lock.unlock();
}
return modified;
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean offerLast(E e) {
if (e == null) throw new NullPointerException();
Node node = new Node(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
return linkLast(node);
} finally {
lock.unlock();
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
public void putFirst(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
Node node = new Node(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
while (!linkFirst(node))
notFull.await();
} finally {
lock.unlock();
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
public void putLast(E e) throws InterruptedException {
if (e == null) throw new NullPointerException();
Node node = new Node(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
while (!linkLast(node))
notFull.await();
} finally {
lock.unlock();
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
public boolean offerFirst(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) throw new NullPointerException();
Node node = new Node(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (!linkFirst(node)) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
return true;
} finally {
lock.unlock();
}
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
public boolean offerLast(E e, long timeout, TimeUnit unit)
throws InterruptedException {
if (e == null) throw new NullPointerException();
Node node = new Node(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (!linkLast(node)) {
if (nanos <= 0)
return false;
nanos = notFull.awaitNanos(nanos);
}
return true;
} finally {
lock.unlock();
}
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeFirst() {
E x = pollFirst();
if (x == null) throw new NoSuchElementException();
return x;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E removeLast() {
E x = pollLast();
if (x == null) throw new NoSuchElementException();
return x;
}
public E pollFirst() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return unlinkFirst();
} finally {
lock.unlock();
}
}
public E pollLast() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return unlinkLast();
} finally {
lock.unlock();
}
}
public E takeFirst() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E x;
while ( (x = unlinkFirst()) == null)
notEmpty.await();
return x;
} finally {
lock.unlock();
}
}
public E takeLast() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E x;
while ( (x = unlinkLast()) == null)
notEmpty.await();
return x;
} finally {
lock.unlock();
}
}
public E pollFirst(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
E x;
while ( (x = unlinkFirst()) == null) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return x;
} finally {
lock.unlock();
}
}
public E pollLast(long timeout, TimeUnit unit)
throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
E x;
while ( (x = unlinkLast()) == null) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
return x;
} finally {
lock.unlock();
}
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getFirst() {
E x = peekFirst();
if (x == null) throw new NoSuchElementException();
return x;
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E getLast() {
E x = peekLast();
if (x == null) throw new NoSuchElementException();
return x;
}
public E peekFirst() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (first == null) ? null : first.item;
} finally {
lock.unlock();
}
}
public E peekLast() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (last == null) ? null : last.item;
} finally {
lock.unlock();
}
}
public boolean removeFirstOccurrence(Object o) {
if (o == null) return false;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node p = first; p != null; p = p.next) {
if (o.equals(p.item)) {
unlink(p);
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
public boolean removeLastOccurrence(Object o) {
if (o == null) return false;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node p = last; p != null; p = p.prev) {
if (o.equals(p.item)) {
unlink(p);
return true;
}
}
return false;
} finally {
lock.unlock();
}
}
// BlockingQueue methods
/**
* Inserts the specified element at the end of this deque unless it would
* violate capacity restrictions. When using a capacity-restricted deque,
* it is generally preferable to use method {@link #offer(Object) offer}.
*
* This method is equivalent to {@link #addLast}.
*
* @throws IllegalStateException if this deque is full
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
addLast(e);
return true;
}
/**
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
return offerLast(e);
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
public void put(E e) throws InterruptedException {
putLast(e);
}
/**
* @throws NullPointerException {@inheritDoc}
* @throws InterruptedException {@inheritDoc}
*/
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
return offerLast(e, timeout, unit);
}
/**
* Retrieves and removes the head of the queue represented by this deque.
* This method differs from {@link #poll poll} only in that it throws an
* exception if this deque is empty.
*
*
This method is equivalent to {@link #removeFirst() removeFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException if this deque is empty
*/
public E remove() {
return removeFirst();
}
public E poll() {
return pollFirst();
}
public E take() throws InterruptedException {
return takeFirst();
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
return pollFirst(timeout, unit);
}
/**
* Retrieves, but does not remove, the head of the queue represented by
* this deque. This method differs from {@link #peek peek} only in that
* it throws an exception if this deque is empty.
*
*
This method is equivalent to {@link #getFirst() getFirst}.
*
* @return the head of the queue represented by this deque
* @throws NoSuchElementException if this deque is empty
*/
public E element() {
return getFirst();
}
public E peek() {
return peekFirst();
}
/**
* Returns the number of additional elements that this deque can ideally
* (in the absence of memory or resource constraints) accept without
* blocking. This is always equal to the initial capacity of this deque
* less the current {@code size} of this deque.
*
*
Note that you cannot always tell if an attempt to insert
* an element will succeed by inspecting {@code remainingCapacity}
* because it may be the case that another thread is about to
* insert or remove an element.
*/
public int remainingCapacity() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return capacity - count;
} finally {
lock.unlock();
}
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection super E> c) {
return drainTo(c, Integer.MAX_VALUE);
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection super E> c, int maxElements) {
if (c == null)
throw new NullPointerException();
if (c == this)
throw new IllegalArgumentException();
if (maxElements <= 0)
return 0;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int n = Math.min(maxElements, count);
for (int i = 0; i < n; i++) {
c.add(first.item); // In this order, in case add() throws.
unlinkFirst();
}
return n;
} finally {
lock.unlock();
}
}
// Stack methods
/**
* @throws IllegalStateException if this deque is full
* @throws NullPointerException {@inheritDoc}
*/
public void push(E e) {
addFirst(e);
}
/**
* @throws NoSuchElementException {@inheritDoc}
*/
public E pop() {
return removeFirst();
}
// Collection methods
/**
* Removes the first occurrence of the specified element from this deque.
* If the deque does not contain the element, it is unchanged.
* More formally, removes the first element {@code e} such that
* {@code o.equals(e)} (if such an element exists).
* Returns {@code true} if this deque contained the specified element
* (or equivalently, if this deque changed as a result of the call).
*
*
This method is equivalent to
* {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
*
* @param o element to be removed from this deque, if present
* @return {@code true} if this deque changed as a result of the call
*/
public boolean remove(Object o) {
return removeFirstOccurrence(o);
}
/**
* Returns the number of elements in this deque.
*
* @return the number of elements in this deque
*/
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
}
/**
* Returns {@code true} if this deque contains the specified element.
* More formally, returns {@code true} if and only if this deque contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this deque
* @return {@code true} if this deque contains the specified element
*/
public boolean contains(Object o) {
if (o == null) return false;
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node p = first; p != null; p = p.next)
if (o.equals(p.item))
return true;
return false;
} finally {
lock.unlock();
}
}
/*
* TODO: Add support for more efficient bulk operations.
*
* We don't want to acquire the lock for every iteration, but we
* also want other threads a chance to interact with the
* collection, especially when count is close to capacity.
*/
// /**
// * Adds all of the elements in the specified collection to this
// * queue. Attempts to addAll of a queue to itself result in
// * {@code IllegalArgumentException}. Further, the behavior of
// * this operation is undefined if the specified collection is
// * modified while the operation is in progress.
// *
// * @param c collection containing elements to be added to this queue
// * @return {@code true} if this queue changed as a result of the call
// * @throws ClassCastException {@inheritDoc}
// * @throws NullPointerException {@inheritDoc}
// * @throws IllegalArgumentException {@inheritDoc}
// * @throws IllegalStateException if this deque is full
// * @see #add(Object)
// */
// public boolean addAll(Collection extends E> c) {
// if (c == null)
// throw new NullPointerException();
// if (c == this)
// throw new IllegalArgumentException();
// final ReentrantLock lock = this.lock;
// lock.lock();
// try {
// boolean modified = false;
// for (E e : c)
// if (linkLast(e))
// modified = true;
// return modified;
// } finally {
// lock.unlock();
// }
// }
/**
* Returns an array containing all of the elements in this deque, in
* proper sequence (from first to last element).
*
* The returned array will be "safe" in that no references to it are
* maintained by this deque. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
*
This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this deque
*/
@SuppressWarnings("unchecked")
public Object[] toArray() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] a = new Object[count];
int k = 0;
for (Node p = first; p != null; p = p.next)
a[k++] = p.item;
return a;
} finally {
lock.unlock();
}
}
/**
* Returns an array containing all of the elements in this deque, in
* proper sequence; the runtime type of the returned array is that of
* the specified array. If the deque fits in the specified array, it
* is returned therein. Otherwise, a new array is allocated with the
* runtime type of the specified array and the size of this deque.
*
* If this deque fits in the specified array with room to spare
* (i.e., the array has more elements than this deque), the element in
* the array immediately following the end of the deque is set to
* {@code null}.
*
*
Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
*
Suppose {@code x} is a deque known to contain only strings.
* The following code can be used to dump the deque into a newly
* allocated array of {@code String}:
*
*
{@code String[] y = x.toArray(new String[0]);}
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the deque are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this deque
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this deque
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public T[] toArray(T[] a) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (a.length < count)
a = (T[])java.lang.reflect.Array.newInstance
(a.getClass().getComponentType(), count);
int k = 0;
for (Node p = first; p != null; p = p.next)
a[k++] = (T)p.item;
if (a.length > k)
a[k] = null;
return a;
} finally {
lock.unlock();
}
}
public String toString() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Node p = first;
if (p == null)
return "[]";
StringBuilder sb = new StringBuilder();
sb.append('[');
for (;;) {
E e = p.item;
sb.append(e == this ? "(this Collection)" : e);
p = p.next;
if (p == null)
return sb.append(']').toString();
sb.append(',').append(' ');
}
} finally {
lock.unlock();
}
}
/**
* Atomically removes all of the elements from this deque.
* The deque will be empty after this call returns.
*/
public void clear() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
for (Node f = first; f != null; ) {
f.item = null;
Node n = f.next;
f.prev = null;
f.next = null;
f = n;
}
first = last = null;
count = 0;
notFull.signalAll();
} finally {
lock.unlock();
}
}
/**
* Returns an iterator over the elements in this deque in proper sequence.
* The elements will be returned in order from first (head) to last (tail).
*
* The returned iterator is
* weakly consistent.
*
* @return an iterator over the elements in this deque in proper sequence
*/
public Iterator iterator() {
return new Itr();
}
/**
* Returns an iterator over the elements in this deque in reverse
* sequential order. The elements will be returned in order from
* last (tail) to first (head).
*
* The returned iterator is
* weakly consistent.
*
* @return an iterator over the elements in this deque in reverse order
*/
public Iterator descendingIterator() {
return new DescendingItr();
}
/**
* Base class for Iterators for LinkedBlockingDeque
*/
private abstract class AbstractItr implements Iterator {
/**
* The next node to return in next()
*/
Node next;
/**
* nextItem holds on to item fields because once we claim that
* an element exists in hasNext(), we must return item read
* under lock (in advance()) even if it was in the process of
* being removed when hasNext() was called.
*/
E nextItem;
/**
* Node returned by most recent call to next. Needed by remove.
* Reset to null if this element is deleted by a call to remove.
*/
private Node lastRet;
abstract Node firstNode();
abstract Node nextNode(Node n);
AbstractItr() {
// set to initial position
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
next = firstNode();
nextItem = (next == null) ? null : next.item;
} finally {
lock.unlock();
}
}
/**
* Returns the successor node of the given non-null, but
* possibly previously deleted, node.
*/
private Node succ(Node n) {
// Chains of deleted nodes ending in null or self-links
// are possible if multiple interior nodes are removed.
for (;;) {
Node s = nextNode(n);
if (s == null)
return null;
else if (s.item != null)
return s;
else if (s == n)
return firstNode();
else
n = s;
}
}
/**
* Advances next.
*/
void advance() {
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
// assert next != null;
next = succ(next);
nextItem = (next == null) ? null : next.item;
} finally {
lock.unlock();
}
}
public boolean hasNext() {
return next != null;
}
public E next() {
if (next == null)
throw new NoSuchElementException();
lastRet = next;
E x = nextItem;
advance();
return x;
}
public void remove() {
Node n = lastRet;
if (n == null)
throw new IllegalStateException();
lastRet = null;
final ReentrantLock lock = LinkedBlockingDeque.this.lock;
lock.lock();
try {
if (n.item != null)
unlink(n);
} finally {
lock.unlock();
}
}
}
/** Forward iterator */
private class Itr extends AbstractItr {
Node firstNode() { return first; }
Node nextNode(Node n) { return n.next; }
}
/** Descending iterator */
private class DescendingItr extends AbstractItr {
Node firstNode() { return last; }
Node nextNode(Node n) { return n.prev; }
}
/**
* Saves this deque to a stream (that is, serializes it).
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
* @serialData The capacity (int), followed by elements (each an
* {@code Object}) in the proper order, followed by a null
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final ReentrantLock lock = this.lock;
lock.lock();
try {
// Write out capacity and any hidden stuff
s.defaultWriteObject();
// Write out all elements in the proper order.
for (Node p = first; p != null; p = p.next)
s.writeObject(p.item);
// Use trailing null as sentinel
s.writeObject(null);
} finally {
lock.unlock();
}
}
/**
* Reconstitutes this deque from a stream (that is, deserializes it).
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
count = 0;
first = null;
last = null;
// Read in all elements and place in queue
for (;;) {
@SuppressWarnings("unchecked")
E item = (E)s.readObject();
if (item == null)
break;
add(item);
}
}
}