All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.gs.collections.impl.parallel.ParallelIterate Maven / Gradle / Ivy

Go to download

GS Collections is a collections framework for Java. It has JDK-compatible List, Set and Map implementations with a rich API and set of utility classes that work with any JDK compatible Collections, Arrays, Maps or Strings. The iteration protocol was inspired by the Smalltalk collection framework.

There is a newer version: 7.0.3
Show newest version
/*
 * Copyright 2015 Goldman Sachs.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.gs.collections.impl.parallel;

import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.Collection;
import java.util.List;
import java.util.RandomAccess;
import java.util.concurrent.Executor;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

import com.gs.collections.api.block.function.Function;
import com.gs.collections.api.block.function.Function0;
import com.gs.collections.api.block.function.Function2;
import com.gs.collections.api.block.function.primitive.DoubleFunction;
import com.gs.collections.api.block.function.primitive.DoubleFunction0;
import com.gs.collections.api.block.function.primitive.FloatFunction;
import com.gs.collections.api.block.function.primitive.IntFunction;
import com.gs.collections.api.block.function.primitive.LongFunction;
import com.gs.collections.api.block.predicate.Predicate;
import com.gs.collections.api.block.procedure.Procedure;
import com.gs.collections.api.block.procedure.Procedure2;
import com.gs.collections.api.block.procedure.primitive.ObjectIntProcedure;
import com.gs.collections.api.block.procedure.primitive.ObjectLongProcedure;
import com.gs.collections.api.list.ListIterable;
import com.gs.collections.api.map.MutableMap;
import com.gs.collections.api.map.primitive.ObjectDoubleMap;
import com.gs.collections.api.map.primitive.ObjectLongMap;
import com.gs.collections.api.multimap.MutableMultimap;
import com.gs.collections.api.tuple.primitive.DoubleDoublePair;
import com.gs.collections.impl.block.factory.Functions0;
import com.gs.collections.impl.block.procedure.MultimapPutProcedure;
import com.gs.collections.impl.block.procedure.MutatingAggregationProcedure;
import com.gs.collections.impl.block.procedure.NonMutatingAggregationProcedure;
import com.gs.collections.impl.factory.Maps;
import com.gs.collections.impl.list.fixed.ArrayAdapter;
import com.gs.collections.impl.map.mutable.ConcurrentHashMap;
import com.gs.collections.impl.map.mutable.UnifiedMap;
import com.gs.collections.impl.map.mutable.primitive.ObjectDoubleHashMap;
import com.gs.collections.impl.map.mutable.primitive.ObjectLongHashMap;
import com.gs.collections.impl.multimap.list.SynchronizedPutFastListMultimap;
import com.gs.collections.impl.tuple.primitive.PrimitiveTuples;
import com.gs.collections.impl.utility.Iterate;

import static com.gs.collections.impl.factory.Iterables.iList;

/**
 * The ParallelIterate class contains several parallel algorithms that work with Collections.  All of the higher
 * level parallel algorithms depend on the basic parallel algorithm named {@code forEach}.  The forEach algorithm employs
 * a batching fork and join approach.
 * 

* All Collections that are not either a {@link RandomAccess} or {@link List} are first converted to a Java array * using {@link Iterate#toArray(Iterable)}, and then run with one of the {@code ParallelArrayIterate.forEach} methods. * * @see ParallelArrayIterate */ public final class ParallelIterate { static final int DEFAULT_MIN_FORK_SIZE = 10000; static final int AVAILABLE_PROCESSORS = Runtime.getRuntime().availableProcessors(); static final int TASK_RATIO = 2; static final int DEFAULT_PARALLEL_TASK_COUNT = ParallelIterate.getDefaultTaskCount(); static final ExecutorService EXECUTOR_SERVICE = ParallelIterate.newPooledExecutor(ParallelIterate.class.getSimpleName(), true); private ParallelIterate() { throw new AssertionError("Suppress default constructor for noninstantiability"); } static boolean isExecutorShutdown() { return ParallelIterate.EXECUTOR_SERVICE.isShutdown(); } static void shutdownExecutor() { ParallelIterate.EXECUTOR_SERVICE.shutdown(); } /** * Iterate over the collection specified, in parallel batches using default runtime parameter values. The * {@code ObjectIntProcedure} used must be stateless, or use concurrent aware objects if they are to be shared. *

* e.g. *

     * {@code final Map chm = new ConcurrentHashMap();}
     * ParallelIterate.forEachWithIndex(collection, new ObjectIntProcedure()
     * {
     *     public void value(Object object, int index)
     *     {
     *         chm.put(index, object);
     *     }
     * });
     * 
*/ public static void forEachWithIndex( Iterable iterable, ObjectIntProcedure objectIntProcedure) { ParallelIterate.forEachWithIndex(iterable, objectIntProcedure, ParallelIterate.EXECUTOR_SERVICE); } /** * Iterate over the collection specified in parallel batches using the default runtime parameters. The * ObjectIntProcedure used must be stateless, or use concurrent aware objects if they are to be shared. The code * is executed against the specified executor. *

*

e.g.
     * {@code final Map chm = new ConcurrentHashMap();}
     * ParallelIterate.forEachWithIndex(collection, new ObjectIntProcedure()
     * {
     *     public void value(Object object, int index)
     *     {
     *         chm.put(index, object);
     *     }
     * }, executor);
     * 
* * @param executor Use this executor for all execution. */ public static > void forEachWithIndex( Iterable iterable, BT procedure, Executor executor) { ParallelIterate.forEachWithIndex( iterable, new PassThruObjectIntProcedureFactory(procedure), new PassThruCombiner(), executor); } /** * Iterate over the collection specified in parallel batches. The * ObjectIntProcedure used must be stateless, or use concurrent aware objects if they are to be shared. The * specified minimum fork size and task count are used instead of the default values. * * @param minForkSize Only run in parallel if input collection is longer than this. * @param taskCount How many parallel tasks to submit to the executor. * @see #forEachWithIndex(Iterable, ObjectIntProcedure) */ public static > void forEachWithIndex( Iterable iterable, BT procedure, int minForkSize, int taskCount) { ParallelIterate.forEachWithIndex( iterable, new PassThruObjectIntProcedureFactory(procedure), new PassThruCombiner(), minForkSize, taskCount); } public static > void forEachWithIndex( Iterable iterable, ObjectIntProcedureFactory procedureFactory, Combiner combiner, Executor executor) { int taskCount = Math.max( ParallelIterate.DEFAULT_PARALLEL_TASK_COUNT, Iterate.sizeOf(iterable) / ParallelIterate.DEFAULT_MIN_FORK_SIZE); ParallelIterate.forEachWithIndex( iterable, procedureFactory, combiner, ParallelIterate.DEFAULT_MIN_FORK_SIZE, taskCount, executor); } public static > void forEachWithIndex( Iterable iterable, ObjectIntProcedureFactory procedureFactory, Combiner combiner, int minForkSize, int taskCount) { ParallelIterate.forEachWithIndex(iterable, procedureFactory, combiner, minForkSize, taskCount, ParallelIterate.EXECUTOR_SERVICE); } public static > void forEachWithIndex( Iterable iterable, ObjectIntProcedureFactory procedureFactory, Combiner combiner, int minForkSize, int taskCount, Executor executor) { if (Iterate.notEmpty(iterable)) { if (iterable instanceof RandomAccess || iterable instanceof ListIterable && iterable instanceof List) { ParallelIterate.forEachWithIndexInListOnExecutor( (List) iterable, procedureFactory, combiner, minForkSize, taskCount, executor); } else { ParallelIterate.forEachWithIndexInListOnExecutor( ArrayAdapter.adapt((T[]) Iterate.toArray(iterable)), procedureFactory, combiner, minForkSize, taskCount, executor); } } } public static > void forEachWithIndexInListOnExecutor( List list, ObjectIntProcedureFactory procedureFactory, Combiner combiner, int minForkSize, int taskCount, Executor executor) { int size = list.size(); if (size < minForkSize) { BT procedure = procedureFactory.create(); Iterate.forEachWithIndex(list, procedure); if (combiner.useCombineOne()) { combiner.combineOne(procedure); } else { combiner.combineAll(iList(procedure)); } } else { int threadCount = Math.min(size, taskCount); ObjectIntProcedureFJTaskRunner runner = new ObjectIntProcedureFJTaskRunner(combiner, threadCount); runner.executeAndCombine(executor, procedureFactory, list); } } /** * Iterate over the collection specified in parallel batches using default runtime parameter values. The * {@code Procedure} used must be stateless, or use concurrent aware objects if they are to be shared. *

* e.g. *

     * {@code final Map chm = new ConcurrentHashMap();}
     * ParallelIterate.forEach(collection, new Procedure()
     * {
     *     public void value(Object object)
     *     {
     *         chm.put(object, Boolean.TRUE);
     *     }
     * });
     * 
*/ public static void forEach(Iterable iterable, Procedure procedure) { ParallelIterate.forEach(iterable, procedure, ParallelIterate.EXECUTOR_SERVICE); } /** * Iterate over the collection specified in parallel batches using default runtime parameter values. The * {@code Procedure} used must be stateless, or use concurrent aware objects if they are to be shared. *

* e.g. *

     * {@code final Map chm = new ConcurrentHashMap();}
     * ParallelIterate.forEachBatchSize(collection, new Procedure()
     * {
     *     public void value(Object object)
     *     {
     *         chm.put(object, Boolean.TRUE);
     *     }
     * }, 100);
     * 
*/ public static void forEach(Iterable iterable, Procedure procedure, int batchSize) { ParallelIterate.forEach(iterable, procedure, batchSize, ParallelIterate.EXECUTOR_SERVICE); } public static void forEach(Iterable iterable, Procedure procedure, int batchSize, Executor executor) { ParallelIterate.forEach(iterable, procedure, batchSize, ParallelIterate.calculateTaskCount(iterable, batchSize), executor); } /** * Iterate over the collection specified in parallel batches using default runtime parameter values * and the specified executor. * The {@code Procedure} used must be stateless, or use concurrent aware objects if they are to be shared. * * @param executor Use this executor for all execution. * @see #forEach(Iterable, Procedure) */ public static > void forEach( Iterable iterable, BT procedure, Executor executor) { ParallelIterate.forEach( iterable, new PassThruProcedureFactory(procedure), new PassThruCombiner(), executor); } /** * Iterate over the collection specified in parallel batches using the specified minimum fork and task count sizes. * The {@code Procedure} used must be stateless, or use concurrent aware objects if they are to be shared. * * @param minForkSize Only run in parallel if input collection is longer than this. * @param taskCount How many parallel tasks to submit to the executor. * TODO: How does the taskCount relate to the number of threads in the executor? * @see #forEach(Iterable, Procedure) */ public static > void forEach( Iterable iterable, BT procedure, int minForkSize, int taskCount) { ParallelIterate.forEach(iterable, procedure, minForkSize, taskCount, ParallelIterate.EXECUTOR_SERVICE); } public static > void forEach( Iterable iterable, BT procedure, int minForkSize, int taskCount, Executor executor) { ParallelIterate.forEach( iterable, new PassThruProcedureFactory(procedure), new PassThruCombiner(), minForkSize, taskCount, executor); } public static > void forEach( Iterable iterable, ProcedureFactory procedureFactory, Combiner combiner, Executor executor) { ParallelIterate.forEach(iterable, procedureFactory, combiner, ParallelIterate.DEFAULT_MIN_FORK_SIZE, executor); } public static > void forEach( Iterable iterable, ProcedureFactory procedureFactory, Combiner combiner) { ParallelIterate.forEach(iterable, procedureFactory, combiner, ParallelIterate.EXECUTOR_SERVICE); } /** * Iterate over the collection specified in parallel batches using the default values for the task size. The * ProcedureFactory can create stateful closures that will be collected and combined using the specified Combiner. *

*

e.g. The ParallelIterate.select() implementation
     * 

* {@code CollectionCombiner> combiner = CollectionCombiner.forSelect(collection);} * ParallelIterate.forEach(collection,{@code new SelectProcedureFactory(predicate, taskSize), combiner, 1000);} *

*/ @SuppressWarnings("JavaDoc") public static > void forEach( Iterable iterable, ProcedureFactory procedureFactory, Combiner combiner, int batchSize) { ParallelIterate.forEach(iterable, procedureFactory, combiner, batchSize, ParallelIterate.EXECUTOR_SERVICE); } public static > void forEach( Iterable iterable, ProcedureFactory procedureFactory, Combiner combiner, int batchSize, Executor executor) { ParallelIterate.forEach(iterable, procedureFactory, combiner, batchSize, ParallelIterate.calculateTaskCount(iterable, batchSize), executor); } /** * Iterate over the collection specified in parallel batches using the default values for the task size. The * ProcedureFactory can create stateful closures that will be collected and combined using the specified Combiner. *

*

e.g. The ParallelIterate.select() implementation
     * 

* int taskCount = Math.max(DEFAULT_PARALLEL_TASK_COUNT, collection.size() / DEFAULT_MIN_FORK_SIZE); * final int taskSize = collection.size() / taskCount / 2; * {@code CollectionCombiner> combiner = CollectionCombiner.forSelect(collection);} * ParallelIterate.forEach(collection,{@code new SelectProcedureFactory(predicate, taskSize), combiner, DEFAULT_MIN_FORK_SIZE, taskCount);} *

*/ @SuppressWarnings("JavaDoc") public static > void forEach( Iterable iterable, ProcedureFactory procedureFactory, Combiner combiner, int minForkSize, int taskCount) { ParallelIterate.forEach(iterable, procedureFactory, combiner, minForkSize, taskCount, ParallelIterate.EXECUTOR_SERVICE); } public static > void forEach( Iterable iterable, ProcedureFactory procedureFactory, Combiner combiner, int minForkSize, int taskCount, Executor executor) { if (Iterate.notEmpty(iterable)) { if (iterable instanceof BatchIterable) { ParallelIterate.forEachInBatchWithExecutor( (BatchIterable) iterable, procedureFactory, combiner, minForkSize, taskCount, executor); } else if ((iterable instanceof RandomAccess || iterable instanceof ListIterable) && iterable instanceof List) { ParallelIterate.forEachInListOnExecutor( (List) iterable, procedureFactory, combiner, minForkSize, taskCount, executor); } else { ParallelArrayIterate.forEachOn( (T[]) Iterate.toArray(iterable), procedureFactory, combiner, minForkSize, taskCount, executor); } } } public static > void forEachInListOnExecutor( List list, ProcedureFactory procedureFactory, Combiner combiner, int minForkSize, int taskCount, Executor executor) { int size = list.size(); if (size < minForkSize) { BT procedure = procedureFactory.create(); Iterate.forEach(list, procedure); if (combiner.useCombineOne()) { combiner.combineOne(procedure); } else { combiner.combineAll(iList(procedure)); } } else { int threadCount = Math.min(size, taskCount); ProcedureFJTaskRunner runner = new ProcedureFJTaskRunner(combiner, threadCount); runner.executeAndCombine(executor, procedureFactory, list); } } public static > void forEachInBatchWithExecutor( BatchIterable set, ProcedureFactory procedureFactory, Combiner combiner, int minForkSize, int taskCount, Executor executor) { int size = set.size(); if (size < minForkSize) { BT procedure = procedureFactory.create(); set.forEach(procedure); if (combiner.useCombineOne()) { combiner.combineOne(procedure); } else { combiner.combineAll(iList(procedure)); } } else { int threadCount = Math.min(size, Math.min(taskCount, set.getBatchCount((int) Math.ceil((double) size / (double) taskCount)))); BatchIterableProcedureFJTaskRunner runner = new BatchIterableProcedureFJTaskRunner(combiner, threadCount); runner.executeAndCombine(executor, procedureFactory, set); } } /** * Same effect as {@link Iterate#select(Iterable, Predicate)}, but executed in parallel batches. * * @return The selected elements. The Collection will be of the same type as the input (List or Set) * and will be in the same order as the input (if it is an ordered collection). * @see ParallelIterate#select(Iterable, Predicate, boolean) */ public static Collection select( Iterable iterable, Predicate predicate) { return ParallelIterate.select(iterable, predicate, false); } /** * Same effect as {@link Iterate#select(Iterable, Predicate)}, but executed in parallel batches, * and with a potentially reordered result. * * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The selected elements. The Collection will be of the same type (List or Set) as the input. */ public static Collection select( Iterable iterable, Predicate predicate, boolean allowReorderedResult) { return ParallelIterate.select(iterable, predicate, null, allowReorderedResult); } /** * Same effect as {@link Iterate#select(Iterable, Predicate)}, but executed in parallel batches, * and writing output into the specified collection. * * @param target Where to write the output. * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The 'target' collection, with the selected elements added. */ public static > R select( Iterable iterable, Predicate predicate, R target, boolean allowReorderedResult) { return ParallelIterate.select( iterable, predicate, target, ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE, allowReorderedResult); } /** * Same effect as {@link Iterate#select(Iterable, Predicate)}, but executed in parallel batches, * and writing output into the specified collection. * * @param target Where to write the output. * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The 'target' collection, with the selected elements added. */ public static > R select( Iterable iterable, Predicate predicate, R target, int batchSize, Executor executor, boolean allowReorderedResult) { FastListSelectProcedureCombiner combiner = new FastListSelectProcedureCombiner(iterable, target, 10, allowReorderedResult); FastListSelectProcedureFactory procedureFactory = new FastListSelectProcedureFactory(predicate, batchSize); ParallelIterate.forEach( iterable, procedureFactory, combiner, batchSize, ParallelIterate.calculateTaskCount(iterable, batchSize), executor); return (R) combiner.getResult(); } private static int calculateTaskCount(Iterable iterable, int batchSize) { if (iterable instanceof BatchIterable) { return ParallelIterate.calculateTaskCount((BatchIterable) iterable, batchSize); } return ParallelIterate.calculateTaskCount(Iterate.sizeOf(iterable), batchSize); } private static int calculateTaskCount(BatchIterable batchIterable, int batchSize) { return Math.max(2, batchIterable.getBatchCount(batchSize)); } private static int calculateTaskCount(int size, int batchSize) { return Math.max(2, size / batchSize); } /** * Same effect as {@link Iterate#reject(Iterable, Predicate)}, but executed in parallel batches. * * @return The rejected elements. The Collection will be of the same type as the input (List or Set) * and will be in the same order as the input (if it is an ordered collection). * @see ParallelIterate#reject(Iterable, Predicate, boolean) */ public static Collection reject( Iterable iterable, Predicate predicate) { return ParallelIterate.reject(iterable, predicate, false); } /** * Same effect as {@link Iterate#reject(Iterable, Predicate)}, but executed in parallel batches, * and with a potentially reordered result. * * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The rejected elements. The Collection will be of the same type (List or Set) as the input. */ public static Collection reject( Iterable iterable, Predicate predicate, boolean allowReorderedResult) { return ParallelIterate.reject(iterable, predicate, null, allowReorderedResult); } /** * Same effect as {@link Iterate#reject(Iterable, Predicate)}, but executed in parallel batches, * and writing output into the specified collection. * * @param target Where to write the output. * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The 'target' collection, with the rejected elements added. */ public static > R reject( Iterable iterable, Predicate predicate, R target, boolean allowReorderedResult) { return ParallelIterate.reject( iterable, predicate, target, ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE, allowReorderedResult); } public static > R reject( Iterable iterable, Predicate predicate, R target, int batchSize, Executor executor, boolean allowReorderedResult) { FastListRejectProcedureCombiner combiner = new FastListRejectProcedureCombiner(iterable, target, 10, allowReorderedResult); FastListRejectProcedureFactory procedureFactory = new FastListRejectProcedureFactory(predicate, batchSize); ParallelIterate.forEach( iterable, procedureFactory, combiner, batchSize, ParallelIterate.calculateTaskCount(iterable, batchSize), executor); return (R) combiner.getResult(); } /** * Same effect as {@link Iterate#count(Iterable, Predicate)}, but executed in parallel batches. * * @return The number of elements which satisfy the predicate. */ public static int count(Iterable iterable, Predicate predicate) { return ParallelIterate.count(iterable, predicate, ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); } /** * Same effect as {@link Iterate#count(Iterable, Predicate)}, but executed in parallel batches. * * @return The number of elements which satisfy the predicate. */ public static int count(Iterable iterable, Predicate predicate, int batchSize, Executor executor) { CountCombiner combiner = new CountCombiner(); CountProcedureFactory procedureFactory = new CountProcedureFactory(predicate); ParallelIterate.forEach( iterable, procedureFactory, combiner, batchSize, executor); return combiner.getCount(); } /** * Same effect as {@link Iterate#collect(Iterable, Function)}, * but executed in parallel batches. * * @return The collected elements. The Collection will be of the same type as the input (List or Set) * and will be in the same order as the input (if it is an ordered collection). * @see ParallelIterate#collect(Iterable, Function, boolean) */ public static Collection collect( Iterable iterable, Function function) { return ParallelIterate.collect(iterable, function, false); } /** * Same effect as {@link Iterate#collect(Iterable, Function)}, but executed in parallel batches, * and with potentially reordered result. * * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The collected elements. The Collection will be of the same type * (List or Set) as the input. */ public static Collection collect( Iterable iterable, Function function, boolean allowReorderedResult) { return ParallelIterate.collect(iterable, function, null, allowReorderedResult); } /** * Same effect as {@link Iterate#collect(Iterable, Function)}, but executed in parallel batches, * and writing output into the specified collection. * * @param target Where to write the output. * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The 'target' collection, with the collected elements added. */ public static > R collect( Iterable iterable, Function function, R target, boolean allowReorderedResult) { return ParallelIterate.collect( iterable, function, target, ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE, allowReorderedResult); } public static > R collect( Iterable iterable, Function function, R target, int batchSize, Executor executor, boolean allowReorderedResult) { int size = Iterate.sizeOf(iterable); FastListCollectProcedureCombiner combiner = new FastListCollectProcedureCombiner(iterable, target, size, allowReorderedResult); int taskCount = ParallelIterate.calculateTaskCount(iterable, batchSize); FastListCollectProcedureFactory procedureFactory = new FastListCollectProcedureFactory(function, size / taskCount); ParallelIterate.forEach( iterable, procedureFactory, combiner, batchSize, taskCount, executor); return (R) combiner.getResult(); } public static Collection flatCollect( Iterable iterable, Function> function) { return ParallelIterate.flatCollect(iterable, function, false); } public static Collection flatCollect( Iterable iterable, Function> function, boolean allowReorderedResult) { return ParallelIterate.flatCollect(iterable, function, null, allowReorderedResult); } public static > R flatCollect( Iterable iterable, Function> function, R target, boolean allowReorderedResult) { return ParallelIterate.flatCollect( iterable, function, target, ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE, allowReorderedResult); } public static > R flatCollect( Iterable iterable, Function> function, R target, int batchSize, Executor executor, boolean allowReorderedResult) { int size = Iterate.sizeOf(iterable); int taskCount = ParallelIterate.calculateTaskCount(iterable, batchSize); int taskSize = size / taskCount; FlatCollectProcedureCombiner combiner = new FlatCollectProcedureCombiner(iterable, target, size, allowReorderedResult); FlatCollectProcedureFactory procedureFactory = new FlatCollectProcedureFactory(function, taskSize); ParallelIterate.forEach( iterable, procedureFactory, combiner, batchSize, taskCount, executor); return (R) combiner.getResult(); } /** * Same effect as {@link Iterate#collectIf(Iterable, Predicate, Function)}, * but executed in parallel batches. * * @return The collected elements. The Collection will be of the same type as the input (List or Set) * and will be in the same order as the input (if it is an ordered collection). * @see ParallelIterate#collectIf(Iterable, Predicate, Function, boolean) */ public static Collection collectIf( Iterable iterable, Predicate predicate, Function function) { return ParallelIterate.collectIf(iterable, predicate, function, false); } /** * Same effect as {@link Iterate#collectIf(Iterable, Predicate, Function)}, * but executed in parallel batches, and with potentially reordered results. * * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The collected elements. The Collection will be of the same type * as the input (List or Set) */ public static Collection collectIf( Iterable iterable, Predicate predicate, Function function, boolean allowReorderedResult) { return ParallelIterate.collectIf(iterable, predicate, function, null, allowReorderedResult); } /** * Same effect as {@link Iterate#collectIf(Iterable, Predicate, Function)}, * but executed in parallel batches, and writing output into the specified collection. * * @param target Where to write the output. * @param allowReorderedResult If the result can be in a different order. * Allowing reordering may yield faster execution. * @return The 'target' collection, with the collected elements added. */ public static > R collectIf( Iterable iterable, Predicate predicate, Function function, R target, boolean allowReorderedResult) { return ParallelIterate.collectIf( iterable, predicate, function, target, ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE, allowReorderedResult); } public static > R collectIf( Iterable iterable, Predicate predicate, Function function, R target, int batchSize, Executor executor, boolean allowReorderedResult) { FastListCollectIfProcedureCombiner combiner = new FastListCollectIfProcedureCombiner(iterable, target, 10, allowReorderedResult); FastListCollectIfProcedureFactory procedureFactory = new FastListCollectIfProcedureFactory(function, predicate, batchSize); ParallelIterate.forEach( iterable, procedureFactory, combiner, batchSize, ParallelIterate.calculateTaskCount(iterable, batchSize), executor); return (R) combiner.getResult(); } /** * Same effect as {@link Iterate#groupBy(Iterable, Function)}, * but executed in parallel batches, and writing output into a SynchronizedPutFastListMultimap. */ public static MutableMultimap groupBy( Iterable iterable, Function function) { return ParallelIterate.groupBy(iterable, function, ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); } public static MutableMap aggregateBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Function2 nonMutatingAggregator) { return ParallelIterate.aggregateBy( iterable, groupBy, zeroValueFactory, nonMutatingAggregator, ParallelIterate.DEFAULT_MIN_FORK_SIZE); } public static > R aggregateBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Function2 nonMutatingAggregator, R mutableMap) { return ParallelIterate.aggregateBy( iterable, groupBy, zeroValueFactory, nonMutatingAggregator, mutableMap, ParallelIterate.DEFAULT_MIN_FORK_SIZE); } public static MutableMap aggregateBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Function2 nonMutatingAggregator, int batchSize) { return ParallelIterate.aggregateBy( iterable, groupBy, zeroValueFactory, nonMutatingAggregator, batchSize, ParallelIterate.EXECUTOR_SERVICE); } public static > R aggregateBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Function2 nonMutatingAggregator, R mutableMap, int batchSize) { return ParallelIterate.aggregateBy( iterable, groupBy, zeroValueFactory, nonMutatingAggregator, mutableMap, batchSize, ParallelIterate.EXECUTOR_SERVICE); } public static MutableMap aggregateBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Function2 nonMutatingAggregator, int batchSize, Executor executor) { return ParallelIterate.aggregateBy( iterable, groupBy, zeroValueFactory, nonMutatingAggregator, ConcurrentHashMap.newMap(), batchSize, executor); } public static > R aggregateBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Function2 nonMutatingAggregator, R mutableMap, int batchSize, Executor executor) { NonMutatingAggregationProcedure nonMutatingAggregationProcedure = new NonMutatingAggregationProcedure(mutableMap, groupBy, zeroValueFactory, nonMutatingAggregator); ParallelIterate.forEach( iterable, new PassThruProcedureFactory>(nonMutatingAggregationProcedure), Combiners.>passThru(), batchSize, executor); return mutableMap; } public static MutableMap aggregateInPlaceBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Procedure2 mutatingAggregator) { return ParallelIterate.aggregateInPlaceBy( iterable, groupBy, zeroValueFactory, mutatingAggregator, ParallelIterate.DEFAULT_MIN_FORK_SIZE); } public static > R aggregateInPlaceBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Procedure2 mutatingAggregator, R mutableMap) { return ParallelIterate.aggregateInPlaceBy( iterable, groupBy, zeroValueFactory, mutatingAggregator, mutableMap, ParallelIterate.DEFAULT_MIN_FORK_SIZE); } public static MutableMap aggregateInPlaceBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Procedure2 mutatingAggregator, int batchSize) { return ParallelIterate.aggregateInPlaceBy( iterable, groupBy, zeroValueFactory, mutatingAggregator, batchSize, ParallelIterate.EXECUTOR_SERVICE); } public static > R aggregateInPlaceBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Procedure2 mutatingAggregator, R mutableMap, int batchSize) { return ParallelIterate.aggregateInPlaceBy( iterable, groupBy, zeroValueFactory, mutatingAggregator, mutableMap, batchSize, ParallelIterate.EXECUTOR_SERVICE); } public static MutableMap aggregateInPlaceBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Procedure2 mutatingAggregator, int batchSize, Executor executor) { MutableMap map = ConcurrentHashMap.newMap(); MutatingAggregationProcedure mutatingAggregationProcedure = new MutatingAggregationProcedure(map, groupBy, zeroValueFactory, mutatingAggregator); ParallelIterate.forEach( iterable, new PassThruProcedureFactory>(mutatingAggregationProcedure), Combiners.>passThru(), batchSize, executor); return map; } public static > R aggregateInPlaceBy( Iterable iterable, Function groupBy, Function0 zeroValueFactory, Procedure2 mutatingAggregator, R mutableMap, int batchSize, Executor executor) { MutatingAggregationProcedure mutatingAggregationProcedure = new MutatingAggregationProcedure(mutableMap, groupBy, zeroValueFactory, mutatingAggregator); ParallelIterate.forEach( iterable, new PassThruProcedureFactory>(mutatingAggregationProcedure), Combiners.>passThru(), batchSize, executor); return mutableMap; } /** * Same effect as {@link Iterate#groupBy(Iterable, Function)}, * but executed in parallel batches, and writing output into a SynchronizedPutFastListMultimap. */ public static > MutableMultimap groupBy( Iterable iterable, Function function, R concurrentMultimap) { return ParallelIterate.groupBy(iterable, function, concurrentMultimap, ParallelIterate.DEFAULT_MIN_FORK_SIZE); } /** * Same effect as {@link Iterate#groupBy(Iterable, Function)}, * but executed in parallel batches, and writing output into a SynchronizedPutFastListMultimap. */ public static > MutableMultimap groupBy( Iterable iterable, Function function, R concurrentMultimap, int batchSize) { return ParallelIterate.groupBy(iterable, function, concurrentMultimap, batchSize, ParallelIterate.EXECUTOR_SERVICE); } /** * Same effect as {@link Iterate#groupBy(Iterable, Function)}, * but executed in parallel batches, and writing output into a SynchronizedPutFastListMultimap. */ public static MutableMultimap groupBy( Iterable iterable, Function function, int batchSize) { return ParallelIterate.groupBy(iterable, function, batchSize, ParallelIterate.EXECUTOR_SERVICE); } /** * Same effect as {@link Iterate#groupBy(Iterable, Function)}, * but executed in parallel batches, and writing output into a SynchronizedPutFastListMultimap. */ public static MutableMultimap groupBy( Iterable iterable, Function function, int batchSize, Executor executor) { return ParallelIterate.groupBy(iterable, function, SynchronizedPutFastListMultimap.newMultimap(), batchSize, executor); } /** * Same effect as {@link Iterate#groupBy(Iterable, Function)}, * but executed in parallel batches, and writing output into a SynchronizedPutFastListMultimap. */ public static > MutableMultimap groupBy( Iterable iterable, Function function, R concurrentMultimap, int batchSize, Executor executor) { ParallelIterate.forEach( iterable, new PassThruProcedureFactory>(new MultimapPutProcedure(concurrentMultimap, function)), Combiners.>passThru(), batchSize, executor); return concurrentMultimap; } public static ObjectDoubleMap sumByDouble( Iterable iterable, Function groupBy, DoubleFunction function) { ObjectDoubleHashMap result = ObjectDoubleHashMap.newMap(); ParallelIterate.forEach( iterable, new SumByDoubleProcedure(groupBy, function), new SumByDoubleCombiner(result), ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); return result; } public static ObjectDoubleMap sumByFloat( Iterable iterable, Function groupBy, FloatFunction function) { ObjectDoubleHashMap result = ObjectDoubleHashMap.newMap(); ParallelIterate.forEach( iterable, new SumByFloatProcedure(groupBy, function), new SumByFloatCombiner(result), ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); return result; } public static ObjectLongMap sumByLong( Iterable iterable, Function groupBy, LongFunction function) { ObjectLongHashMap result = ObjectLongHashMap.newMap(); ParallelIterate.forEach( iterable, new SumByLongProcedure(groupBy, function), new SumByLongCombiner(result), ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); return result; } public static ObjectLongMap sumByInt( Iterable iterable, Function groupBy, IntFunction function) { ObjectLongHashMap result = ObjectLongHashMap.newMap(); ParallelIterate.forEach( iterable, new SumByIntProcedure(groupBy, function), new SumByIntCombiner(result), ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); return result; } /** * @since 6.0 */ public static MutableMap sumByBigDecimal(Iterable iterable, Function groupBy, Function function) { MutableMap result = UnifiedMap.newMap(); ParallelIterate.forEach( iterable, new SumByBigDecimalProcedure(groupBy, function), new SumByBigDecimalCombiner(result), ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); return result; } /** * @since 6.0 */ public static MutableMap sumByBigInteger(Iterable iterable, Function groupBy, Function function) { MutableMap result = UnifiedMap.newMap(); ParallelIterate.forEach( iterable, new SumByBigIntegerProcedure(groupBy, function), new SumByBigIntegerCombiner(result), ParallelIterate.DEFAULT_MIN_FORK_SIZE, ParallelIterate.EXECUTOR_SERVICE); return result; } /** * Returns a brand new ExecutorService using the specified poolName with the specified maximum thread pool size. The * same poolName may be used more than once resulting in multiple pools with the same name. *

* The pool will be initialised with newPoolSize threads. If that number of threads are in use and another thread * is requested, the pool will reject execution and the submitting thread will execute the task. */ public static ExecutorService newPooledExecutor(int newPoolSize, String poolName, boolean useDaemonThreads) { return new ThreadPoolExecutor( newPoolSize, newPoolSize, 0L, TimeUnit.MILLISECONDS, new SynchronousQueue(), new CollectionsThreadFactory(poolName, useDaemonThreads), new ThreadPoolExecutor.CallerRunsPolicy()); } /** * Returns a brand new ExecutorService using the specified poolName and uses the optional property named * to set the maximum thread pool size. The same poolName may be used more than * once resulting in multiple pools with the same name. */ public static ExecutorService newPooledExecutor(String poolName, boolean useDaemonThreads) { return ParallelIterate.newPooledExecutor(ParallelIterate.getDefaultMaxThreadPoolSize(), poolName, useDaemonThreads); } public static int getDefaultTaskCount() { return ParallelIterate.getDefaultMaxThreadPoolSize() * ParallelIterate.getTaskRatio(); } public static int getDefaultMaxThreadPoolSize() { return Math.min(AVAILABLE_PROCESSORS + 1, 100); } public static int getTaskRatio() { return TASK_RATIO; } private static final class SumByDoubleProcedure implements Procedure, ProcedureFactory> { private final MutableMap map = Maps.mutable.of(); private final Function groupBy; private final DoubleFunction function; private SumByDoubleProcedure(Function groupBy, DoubleFunction function) { this.groupBy = groupBy; this.function = function; } public void value(T each) { V groupKey = this.groupBy.valueOf(each); DoubleDoublePair sumCompensation = this.map.getIfAbsentPut(groupKey, new Function0() { public DoubleDoublePair value() { return PrimitiveTuples.pair(0.0d, 0.0d); } }); double sum = sumCompensation.getOne(); double compensation = sumCompensation.getTwo(); double adjustedValue = this.function.doubleValueOf(each) - compensation; double nextSum = sum + adjustedValue; compensation = nextSum - sum - adjustedValue; sum = nextSum; this.map.put(groupKey, PrimitiveTuples.pair(sum, compensation)); } public MutableMap getResult() { return this.map; } public SumByDoubleProcedure create() { return new SumByDoubleProcedure(this.groupBy, this.function); } } private static final class SumByDoubleCombiner extends AbstractProcedureCombiner> { private final ObjectDoubleHashMap result; private final ObjectDoubleHashMap compensation = ObjectDoubleHashMap.newMap(); private SumByDoubleCombiner(ObjectDoubleHashMap result) { super(true); this.result = result; } public void combineOne(SumByDoubleProcedure thingToCombine) { if (this.result.isEmpty()) { thingToCombine.getResult().forEachKeyValue(new Procedure2() { public void value(V each, DoubleDoublePair sumCompensation) { SumByDoubleCombiner.this.result.put(each, sumCompensation.getOne()); SumByDoubleCombiner.this.compensation.put(each, sumCompensation.getTwo()); } }); } else { thingToCombine.getResult().forEachKeyValue(new Procedure2() { public void value(V each, DoubleDoublePair sumCompensation) { double sum = SumByDoubleCombiner.this.result.get(each); double currentCompensation = SumByDoubleCombiner.this.compensation.getIfAbsentPut(each, new DoubleFunction0() { public double value() { return 0.0d; } }) + sumCompensation.getTwo(); double adjustedValue = sumCompensation.getOne() - currentCompensation; double nextSum = sum + adjustedValue; SumByDoubleCombiner.this.compensation.put(each, nextSum - sum - adjustedValue); SumByDoubleCombiner.this.result.put(each, nextSum); } }); } } } private static final class SumByFloatProcedure implements Procedure, ProcedureFactory> { private final MutableMap map = Maps.mutable.of(); private final Function groupBy; private final FloatFunction function; private SumByFloatProcedure(Function groupBy, FloatFunction function) { this.groupBy = groupBy; this.function = function; } public void value(T each) { V groupKey = this.groupBy.valueOf(each); DoubleDoublePair sumCompensation = this.map.getIfAbsentPut(groupKey, new Function0() { public DoubleDoublePair value() { return PrimitiveTuples.pair(0.0d, 0.0d); } }); double sum = sumCompensation.getOne(); double compensation = sumCompensation.getTwo(); double adjustedValue = this.function.floatValueOf(each) - compensation; double nextSum = sum + adjustedValue; compensation = nextSum - sum - adjustedValue; sum = nextSum; this.map.put(groupKey, PrimitiveTuples.pair(sum, compensation)); } public MutableMap getResult() { return this.map; } public SumByFloatProcedure create() { return new SumByFloatProcedure(this.groupBy, this.function); } } private static final class SumByFloatCombiner extends AbstractProcedureCombiner> { private final ObjectDoubleHashMap result; private final ObjectDoubleHashMap compensation = ObjectDoubleHashMap.newMap(); private SumByFloatCombiner(ObjectDoubleHashMap result) { super(true); this.result = result; } public void combineOne(SumByFloatProcedure thingToCombine) { if (this.result.isEmpty()) { thingToCombine.getResult().forEachKeyValue(new Procedure2() { public void value(V each, DoubleDoublePair sumCompensation) { SumByFloatCombiner.this.result.put(each, sumCompensation.getOne()); SumByFloatCombiner.this.compensation.put(each, sumCompensation.getTwo()); } }); } else { thingToCombine.getResult().forEachKeyValue(new Procedure2() { public void value(V each, DoubleDoublePair sumCompensation) { double sum = SumByFloatCombiner.this.result.get(each); double currentCompensation = SumByFloatCombiner.this.compensation.getIfAbsentPut(each, new DoubleFunction0() { public double value() { return 0.0d; } }) + sumCompensation.getTwo(); double adjustedValue = sumCompensation.getOne() - currentCompensation; double nextSum = sum + adjustedValue; SumByFloatCombiner.this.compensation.put(each, nextSum - sum - adjustedValue); SumByFloatCombiner.this.result.put(each, nextSum); } }); } } } private static final class SumByLongProcedure implements Procedure, ProcedureFactory> { private final ObjectLongHashMap map = ObjectLongHashMap.newMap(); private final Function groupBy; private final LongFunction function; private SumByLongProcedure(Function groupBy, LongFunction function) { this.groupBy = groupBy; this.function = function; } public void value(T each) { this.map.addToValue(this.groupBy.valueOf(each), this.function.longValueOf(each)); } public ObjectLongHashMap getResult() { return this.map; } public SumByLongProcedure create() { return new SumByLongProcedure(this.groupBy, this.function); } } private static final class SumByLongCombiner extends AbstractProcedureCombiner> { private final ObjectLongHashMap result; private SumByLongCombiner(ObjectLongHashMap result) { super(true); this.result = result; } public void combineOne(SumByLongProcedure thingToCombine) { if (this.result.isEmpty()) { this.result.putAll(thingToCombine.getResult()); } else { thingToCombine.getResult().forEachKeyValue(new ObjectLongProcedure() { public void value(V each, long value) { SumByLongCombiner.this.result.addToValue(each, value); } }); } } } private static final class SumByIntProcedure implements Procedure, ProcedureFactory> { private final ObjectLongHashMap map = ObjectLongHashMap.newMap(); private final Function groupBy; private final IntFunction function; private SumByIntProcedure(Function groupBy, IntFunction function) { this.groupBy = groupBy; this.function = function; } public void value(T each) { this.map.addToValue(this.groupBy.valueOf(each), (long) this.function.intValueOf(each)); } public ObjectLongHashMap getResult() { return this.map; } public SumByIntProcedure create() { return new SumByIntProcedure(this.groupBy, this.function); } } private static final class SumByIntCombiner extends AbstractProcedureCombiner> { private final ObjectLongHashMap result; private SumByIntCombiner(ObjectLongHashMap result) { super(true); this.result = result; } public void combineOne(SumByIntProcedure thingToCombine) { if (this.result.isEmpty()) { this.result.putAll(thingToCombine.getResult()); } else { thingToCombine.getResult().forEachKeyValue(new ObjectLongProcedure() { public void value(V each, long value) { SumByIntCombiner.this.result.addToValue(each, value); } }); } } } private static final class SumByBigDecimalProcedure implements Procedure, ProcedureFactory> { private final MutableMap map = UnifiedMap.newMap(); private final Function groupBy; private final Function function; private SumByBigDecimalProcedure(Function groupBy, Function function) { this.groupBy = groupBy; this.function = function; } public void value(final T each) { this.map.updateValue(this.groupBy.valueOf(each), Functions0.zeroBigDecimal(), new Function() { public BigDecimal valueOf(BigDecimal original) { return original.add(SumByBigDecimalProcedure.this.function.valueOf(each)); } }); } public MutableMap getResult() { return this.map; } public SumByBigDecimalProcedure create() { return new SumByBigDecimalProcedure(this.groupBy, this.function); } } private static final class SumByBigDecimalCombiner extends AbstractProcedureCombiner> { private final MutableMap result; private SumByBigDecimalCombiner(MutableMap result) { super(true); this.result = result; } public void combineOne(SumByBigDecimalProcedure thingToCombine) { if (this.result.isEmpty()) { this.result.putAll(thingToCombine.getResult()); } else { thingToCombine.getResult().forEachKeyValue(new Procedure2() { public void value(V key, final BigDecimal value) { SumByBigDecimalCombiner.this.result.updateValue(key, Functions0.zeroBigDecimal(), new Function() { public BigDecimal valueOf(BigDecimal original) { return original.add(value); } }); } }); } } } private static final class SumByBigIntegerProcedure implements Procedure, ProcedureFactory> { private final MutableMap map = UnifiedMap.newMap(); private final Function groupBy; private final Function function; private SumByBigIntegerProcedure(Function groupBy, Function function) { this.groupBy = groupBy; this.function = function; } public void value(final T each) { this.map.updateValue(this.groupBy.valueOf(each), Functions0.zeroBigInteger(), new Function() { public BigInteger valueOf(BigInteger original) { return original.add(SumByBigIntegerProcedure.this.function.valueOf(each)); } }); } public MutableMap getResult() { return this.map; } public SumByBigIntegerProcedure create() { return new SumByBigIntegerProcedure(this.groupBy, this.function); } } private static final class SumByBigIntegerCombiner extends AbstractProcedureCombiner> { private final MutableMap result; private SumByBigIntegerCombiner(MutableMap result) { super(true); this.result = result; } public void combineOne(SumByBigIntegerProcedure thingToCombine) { if (this.result.isEmpty()) { this.result.putAll(thingToCombine.getResult()); } else { thingToCombine.getResult().forEachKeyValue(new Procedure2() { public void value(V key, final BigInteger value) { SumByBigIntegerCombiner.this.result.updateValue(key, Functions0.zeroBigInteger(), new Function() { public BigInteger valueOf(BigInteger original) { return original.add(value); } }); } }); } } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy