com.google.cloud.aiplatform.v1.TensorboardServiceGrpc Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of grpc-google-cloud-aiplatform-v1 Show documentation
Show all versions of grpc-google-cloud-aiplatform-v1 Show documentation
GRPC library for google-cloud-aiplatform
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.cloud.aiplatform.v1;
import static io.grpc.MethodDescriptor.generateFullMethodName;
/**
*
*
*
* TensorboardService
*
*/
@javax.annotation.Generated(
value = "by gRPC proto compiler",
comments = "Source: google/cloud/aiplatform/v1/tensorboard_service.proto")
@io.grpc.stub.annotations.GrpcGenerated
public final class TensorboardServiceGrpc {
private TensorboardServiceGrpc() {}
public static final java.lang.String SERVICE_NAME =
"google.cloud.aiplatform.v1.TensorboardService";
// Static method descriptors that strictly reflect the proto.
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardRequest, com.google.longrunning.Operation>
getCreateTensorboardMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "CreateTensorboard",
requestType = com.google.cloud.aiplatform.v1.CreateTensorboardRequest.class,
responseType = com.google.longrunning.Operation.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardRequest, com.google.longrunning.Operation>
getCreateTensorboardMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardRequest,
com.google.longrunning.Operation>
getCreateTensorboardMethod;
if ((getCreateTensorboardMethod = TensorboardServiceGrpc.getCreateTensorboardMethod) == null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getCreateTensorboardMethod = TensorboardServiceGrpc.getCreateTensorboardMethod)
== null) {
TensorboardServiceGrpc.getCreateTensorboardMethod =
getCreateTensorboardMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(generateFullMethodName(SERVICE_NAME, "CreateTensorboard"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.CreateTensorboardRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.longrunning.Operation.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("CreateTensorboard"))
.build();
}
}
}
return getCreateTensorboardMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardRequest,
com.google.cloud.aiplatform.v1.Tensorboard>
getGetTensorboardMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "GetTensorboard",
requestType = com.google.cloud.aiplatform.v1.GetTensorboardRequest.class,
responseType = com.google.cloud.aiplatform.v1.Tensorboard.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardRequest,
com.google.cloud.aiplatform.v1.Tensorboard>
getGetTensorboardMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardRequest,
com.google.cloud.aiplatform.v1.Tensorboard>
getGetTensorboardMethod;
if ((getGetTensorboardMethod = TensorboardServiceGrpc.getGetTensorboardMethod) == null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getGetTensorboardMethod = TensorboardServiceGrpc.getGetTensorboardMethod) == null) {
TensorboardServiceGrpc.getGetTensorboardMethod =
getGetTensorboardMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(generateFullMethodName(SERVICE_NAME, "GetTensorboard"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.GetTensorboardRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.Tensorboard.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("GetTensorboard"))
.build();
}
}
}
return getGetTensorboardMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest, com.google.longrunning.Operation>
getUpdateTensorboardMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboard",
requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardRequest.class,
responseType = com.google.longrunning.Operation.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest, com.google.longrunning.Operation>
getUpdateTensorboardMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest,
com.google.longrunning.Operation>
getUpdateTensorboardMethod;
if ((getUpdateTensorboardMethod = TensorboardServiceGrpc.getUpdateTensorboardMethod) == null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getUpdateTensorboardMethod = TensorboardServiceGrpc.getUpdateTensorboardMethod)
== null) {
TensorboardServiceGrpc.getUpdateTensorboardMethod =
getUpdateTensorboardMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(generateFullMethodName(SERVICE_NAME, "UpdateTensorboard"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.longrunning.Operation.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("UpdateTensorboard"))
.build();
}
}
}
return getUpdateTensorboardMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardsResponse>
getListTensorboardsMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ListTensorboards",
requestType = com.google.cloud.aiplatform.v1.ListTensorboardsRequest.class,
responseType = com.google.cloud.aiplatform.v1.ListTensorboardsResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardsResponse>
getListTensorboardsMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardsResponse>
getListTensorboardsMethod;
if ((getListTensorboardsMethod = TensorboardServiceGrpc.getListTensorboardsMethod) == null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getListTensorboardsMethod = TensorboardServiceGrpc.getListTensorboardsMethod)
== null) {
TensorboardServiceGrpc.getListTensorboardsMethod =
getListTensorboardsMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(generateFullMethodName(SERVICE_NAME, "ListTensorboards"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardsRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardsResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("ListTensorboards"))
.build();
}
}
}
return getListTensorboardsMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest, com.google.longrunning.Operation>
getDeleteTensorboardMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboard",
requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardRequest.class,
responseType = com.google.longrunning.Operation.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest, com.google.longrunning.Operation>
getDeleteTensorboardMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest,
com.google.longrunning.Operation>
getDeleteTensorboardMethod;
if ((getDeleteTensorboardMethod = TensorboardServiceGrpc.getDeleteTensorboardMethod) == null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getDeleteTensorboardMethod = TensorboardServiceGrpc.getDeleteTensorboardMethod)
== null) {
TensorboardServiceGrpc.getDeleteTensorboardMethod =
getDeleteTensorboardMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(generateFullMethodName(SERVICE_NAME, "DeleteTensorboard"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.longrunning.Operation.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("DeleteTensorboard"))
.build();
}
}
}
return getDeleteTensorboardMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>
getReadTensorboardUsageMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardUsage",
requestType = com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest.class,
responseType = com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>
getReadTensorboardUsageMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>
getReadTensorboardUsageMethod;
if ((getReadTensorboardUsageMethod = TensorboardServiceGrpc.getReadTensorboardUsageMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getReadTensorboardUsageMethod = TensorboardServiceGrpc.getReadTensorboardUsageMethod)
== null) {
TensorboardServiceGrpc.getReadTensorboardUsageMethod =
getReadTensorboardUsageMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ReadTensorboardUsage"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("ReadTensorboardUsage"))
.build();
}
}
}
return getReadTensorboardUsageMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>
getReadTensorboardSizeMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardSize",
requestType = com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest.class,
responseType = com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>
getReadTensorboardSizeMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>
getReadTensorboardSizeMethod;
if ((getReadTensorboardSizeMethod = TensorboardServiceGrpc.getReadTensorboardSizeMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getReadTensorboardSizeMethod = TensorboardServiceGrpc.getReadTensorboardSizeMethod)
== null) {
TensorboardServiceGrpc.getReadTensorboardSizeMethod =
getReadTensorboardSizeMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ReadTensorboardSize"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("ReadTensorboardSize"))
.build();
}
}
}
return getReadTensorboardSizeMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getCreateTensorboardExperimentMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "CreateTensorboardExperiment",
requestType = com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardExperiment.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getCreateTensorboardExperimentMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getCreateTensorboardExperimentMethod;
if ((getCreateTensorboardExperimentMethod =
TensorboardServiceGrpc.getCreateTensorboardExperimentMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getCreateTensorboardExperimentMethod =
TensorboardServiceGrpc.getCreateTensorboardExperimentMethod)
== null) {
TensorboardServiceGrpc.getCreateTensorboardExperimentMethod =
getCreateTensorboardExperimentMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "CreateTensorboardExperiment"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardExperiment
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"CreateTensorboardExperiment"))
.build();
}
}
}
return getCreateTensorboardExperimentMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getGetTensorboardExperimentMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "GetTensorboardExperiment",
requestType = com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardExperiment.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getGetTensorboardExperimentMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getGetTensorboardExperimentMethod;
if ((getGetTensorboardExperimentMethod =
TensorboardServiceGrpc.getGetTensorboardExperimentMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getGetTensorboardExperimentMethod =
TensorboardServiceGrpc.getGetTensorboardExperimentMethod)
== null) {
TensorboardServiceGrpc.getGetTensorboardExperimentMethod =
getGetTensorboardExperimentMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "GetTensorboardExperiment"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardExperiment
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"GetTensorboardExperiment"))
.build();
}
}
}
return getGetTensorboardExperimentMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getUpdateTensorboardExperimentMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboardExperiment",
requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardExperiment.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getUpdateTensorboardExperimentMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getUpdateTensorboardExperimentMethod;
if ((getUpdateTensorboardExperimentMethod =
TensorboardServiceGrpc.getUpdateTensorboardExperimentMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getUpdateTensorboardExperimentMethod =
TensorboardServiceGrpc.getUpdateTensorboardExperimentMethod)
== null) {
TensorboardServiceGrpc.getUpdateTensorboardExperimentMethod =
getUpdateTensorboardExperimentMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "UpdateTensorboardExperiment"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardExperiment
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"UpdateTensorboardExperiment"))
.build();
}
}
}
return getUpdateTensorboardExperimentMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>
getListTensorboardExperimentsMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ListTensorboardExperiments",
requestType = com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest.class,
responseType = com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>
getListTensorboardExperimentsMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>
getListTensorboardExperimentsMethod;
if ((getListTensorboardExperimentsMethod =
TensorboardServiceGrpc.getListTensorboardExperimentsMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getListTensorboardExperimentsMethod =
TensorboardServiceGrpc.getListTensorboardExperimentsMethod)
== null) {
TensorboardServiceGrpc.getListTensorboardExperimentsMethod =
getListTensorboardExperimentsMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ListTensorboardExperiments"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"ListTensorboardExperiments"))
.build();
}
}
}
return getListTensorboardExperimentsMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest,
com.google.longrunning.Operation>
getDeleteTensorboardExperimentMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboardExperiment",
requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest.class,
responseType = com.google.longrunning.Operation.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest,
com.google.longrunning.Operation>
getDeleteTensorboardExperimentMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest,
com.google.longrunning.Operation>
getDeleteTensorboardExperimentMethod;
if ((getDeleteTensorboardExperimentMethod =
TensorboardServiceGrpc.getDeleteTensorboardExperimentMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getDeleteTensorboardExperimentMethod =
TensorboardServiceGrpc.getDeleteTensorboardExperimentMethod)
== null) {
TensorboardServiceGrpc.getDeleteTensorboardExperimentMethod =
getDeleteTensorboardExperimentMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "DeleteTensorboardExperiment"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.longrunning.Operation.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"DeleteTensorboardExperiment"))
.build();
}
}
}
return getDeleteTensorboardExperimentMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getCreateTensorboardRunMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "CreateTensorboardRun",
requestType = com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardRun.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getCreateTensorboardRunMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getCreateTensorboardRunMethod;
if ((getCreateTensorboardRunMethod = TensorboardServiceGrpc.getCreateTensorboardRunMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getCreateTensorboardRunMethod = TensorboardServiceGrpc.getCreateTensorboardRunMethod)
== null) {
TensorboardServiceGrpc.getCreateTensorboardRunMethod =
getCreateTensorboardRunMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "CreateTensorboardRun"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardRun.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("CreateTensorboardRun"))
.build();
}
}
}
return getCreateTensorboardRunMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>
getBatchCreateTensorboardRunsMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "BatchCreateTensorboardRuns",
requestType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest.class,
responseType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>
getBatchCreateTensorboardRunsMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>
getBatchCreateTensorboardRunsMethod;
if ((getBatchCreateTensorboardRunsMethod =
TensorboardServiceGrpc.getBatchCreateTensorboardRunsMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getBatchCreateTensorboardRunsMethod =
TensorboardServiceGrpc.getBatchCreateTensorboardRunsMethod)
== null) {
TensorboardServiceGrpc.getBatchCreateTensorboardRunsMethod =
getBatchCreateTensorboardRunsMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "BatchCreateTensorboardRuns"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"BatchCreateTensorboardRuns"))
.build();
}
}
}
return getBatchCreateTensorboardRunsMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getGetTensorboardRunMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "GetTensorboardRun",
requestType = com.google.cloud.aiplatform.v1.GetTensorboardRunRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardRun.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getGetTensorboardRunMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getGetTensorboardRunMethod;
if ((getGetTensorboardRunMethod = TensorboardServiceGrpc.getGetTensorboardRunMethod) == null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getGetTensorboardRunMethod = TensorboardServiceGrpc.getGetTensorboardRunMethod)
== null) {
TensorboardServiceGrpc.getGetTensorboardRunMethod =
getGetTensorboardRunMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(generateFullMethodName(SERVICE_NAME, "GetTensorboardRun"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardRun.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("GetTensorboardRun"))
.build();
}
}
}
return getGetTensorboardRunMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getUpdateTensorboardRunMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboardRun",
requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardRun.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getUpdateTensorboardRunMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>
getUpdateTensorboardRunMethod;
if ((getUpdateTensorboardRunMethod = TensorboardServiceGrpc.getUpdateTensorboardRunMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getUpdateTensorboardRunMethod = TensorboardServiceGrpc.getUpdateTensorboardRunMethod)
== null) {
TensorboardServiceGrpc.getUpdateTensorboardRunMethod =
getUpdateTensorboardRunMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "UpdateTensorboardRun"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardRun.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("UpdateTensorboardRun"))
.build();
}
}
}
return getUpdateTensorboardRunMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>
getListTensorboardRunsMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ListTensorboardRuns",
requestType = com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest.class,
responseType = com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>
getListTensorboardRunsMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>
getListTensorboardRunsMethod;
if ((getListTensorboardRunsMethod = TensorboardServiceGrpc.getListTensorboardRunsMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getListTensorboardRunsMethod = TensorboardServiceGrpc.getListTensorboardRunsMethod)
== null) {
TensorboardServiceGrpc.getListTensorboardRunsMethod =
getListTensorboardRunsMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ListTensorboardRuns"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("ListTensorboardRuns"))
.build();
}
}
}
return getListTensorboardRunsMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest,
com.google.longrunning.Operation>
getDeleteTensorboardRunMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboardRun",
requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest.class,
responseType = com.google.longrunning.Operation.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest,
com.google.longrunning.Operation>
getDeleteTensorboardRunMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest,
com.google.longrunning.Operation>
getDeleteTensorboardRunMethod;
if ((getDeleteTensorboardRunMethod = TensorboardServiceGrpc.getDeleteTensorboardRunMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getDeleteTensorboardRunMethod = TensorboardServiceGrpc.getDeleteTensorboardRunMethod)
== null) {
TensorboardServiceGrpc.getDeleteTensorboardRunMethod =
getDeleteTensorboardRunMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "DeleteTensorboardRun"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.longrunning.Operation.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("DeleteTensorboardRun"))
.build();
}
}
}
return getDeleteTensorboardRunMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>
getBatchCreateTensorboardTimeSeriesMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "BatchCreateTensorboardTimeSeries",
requestType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest.class,
responseType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>
getBatchCreateTensorboardTimeSeriesMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>
getBatchCreateTensorboardTimeSeriesMethod;
if ((getBatchCreateTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getBatchCreateTensorboardTimeSeriesMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getBatchCreateTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getBatchCreateTensorboardTimeSeriesMethod)
== null) {
TensorboardServiceGrpc.getBatchCreateTensorboardTimeSeriesMethod =
getBatchCreateTensorboardTimeSeriesMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "BatchCreateTensorboardTimeSeries"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1
.BatchCreateTensorboardTimeSeriesResponse.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"BatchCreateTensorboardTimeSeries"))
.build();
}
}
}
return getBatchCreateTensorboardTimeSeriesMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getCreateTensorboardTimeSeriesMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "CreateTensorboardTimeSeries",
requestType = com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardTimeSeries.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getCreateTensorboardTimeSeriesMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getCreateTensorboardTimeSeriesMethod;
if ((getCreateTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getCreateTensorboardTimeSeriesMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getCreateTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getCreateTensorboardTimeSeriesMethod)
== null) {
TensorboardServiceGrpc.getCreateTensorboardTimeSeriesMethod =
getCreateTensorboardTimeSeriesMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "CreateTensorboardTimeSeries"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardTimeSeries
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"CreateTensorboardTimeSeries"))
.build();
}
}
}
return getCreateTensorboardTimeSeriesMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getGetTensorboardTimeSeriesMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "GetTensorboardTimeSeries",
requestType = com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardTimeSeries.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getGetTensorboardTimeSeriesMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getGetTensorboardTimeSeriesMethod;
if ((getGetTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getGetTensorboardTimeSeriesMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getGetTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getGetTensorboardTimeSeriesMethod)
== null) {
TensorboardServiceGrpc.getGetTensorboardTimeSeriesMethod =
getGetTensorboardTimeSeriesMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "GetTensorboardTimeSeries"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardTimeSeries
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"GetTensorboardTimeSeries"))
.build();
}
}
}
return getGetTensorboardTimeSeriesMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getUpdateTensorboardTimeSeriesMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboardTimeSeries",
requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest.class,
responseType = com.google.cloud.aiplatform.v1.TensorboardTimeSeries.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getUpdateTensorboardTimeSeriesMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getUpdateTensorboardTimeSeriesMethod;
if ((getUpdateTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getUpdateTensorboardTimeSeriesMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getUpdateTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getUpdateTensorboardTimeSeriesMethod)
== null) {
TensorboardServiceGrpc.getUpdateTensorboardTimeSeriesMethod =
getUpdateTensorboardTimeSeriesMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "UpdateTensorboardTimeSeries"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.TensorboardTimeSeries
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"UpdateTensorboardTimeSeries"))
.build();
}
}
}
return getUpdateTensorboardTimeSeriesMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>
getListTensorboardTimeSeriesMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ListTensorboardTimeSeries",
requestType = com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest.class,
responseType = com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>
getListTensorboardTimeSeriesMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>
getListTensorboardTimeSeriesMethod;
if ((getListTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getListTensorboardTimeSeriesMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getListTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getListTensorboardTimeSeriesMethod)
== null) {
TensorboardServiceGrpc.getListTensorboardTimeSeriesMethod =
getListTensorboardTimeSeriesMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ListTensorboardTimeSeries"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"ListTensorboardTimeSeries"))
.build();
}
}
}
return getListTensorboardTimeSeriesMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest,
com.google.longrunning.Operation>
getDeleteTensorboardTimeSeriesMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboardTimeSeries",
requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest.class,
responseType = com.google.longrunning.Operation.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest,
com.google.longrunning.Operation>
getDeleteTensorboardTimeSeriesMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest,
com.google.longrunning.Operation>
getDeleteTensorboardTimeSeriesMethod;
if ((getDeleteTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getDeleteTensorboardTimeSeriesMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getDeleteTensorboardTimeSeriesMethod =
TensorboardServiceGrpc.getDeleteTensorboardTimeSeriesMethod)
== null) {
TensorboardServiceGrpc.getDeleteTensorboardTimeSeriesMethod =
getDeleteTensorboardTimeSeriesMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "DeleteTensorboardTimeSeries"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.longrunning.Operation.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"DeleteTensorboardTimeSeries"))
.build();
}
}
}
return getDeleteTensorboardTimeSeriesMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>
getBatchReadTensorboardTimeSeriesDataMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "BatchReadTensorboardTimeSeriesData",
requestType = com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest.class,
responseType =
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>
getBatchReadTensorboardTimeSeriesDataMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>
getBatchReadTensorboardTimeSeriesDataMethod;
if ((getBatchReadTensorboardTimeSeriesDataMethod =
TensorboardServiceGrpc.getBatchReadTensorboardTimeSeriesDataMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getBatchReadTensorboardTimeSeriesDataMethod =
TensorboardServiceGrpc.getBatchReadTensorboardTimeSeriesDataMethod)
== null) {
TensorboardServiceGrpc.getBatchReadTensorboardTimeSeriesDataMethod =
getBatchReadTensorboardTimeSeriesDataMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(
SERVICE_NAME, "BatchReadTensorboardTimeSeriesData"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1
.BatchReadTensorboardTimeSeriesDataRequest.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1
.BatchReadTensorboardTimeSeriesDataResponse.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"BatchReadTensorboardTimeSeriesData"))
.build();
}
}
}
return getBatchReadTensorboardTimeSeriesDataMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>
getReadTensorboardTimeSeriesDataMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardTimeSeriesData",
requestType = com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest.class,
responseType = com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>
getReadTensorboardTimeSeriesDataMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>
getReadTensorboardTimeSeriesDataMethod;
if ((getReadTensorboardTimeSeriesDataMethod =
TensorboardServiceGrpc.getReadTensorboardTimeSeriesDataMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getReadTensorboardTimeSeriesDataMethod =
TensorboardServiceGrpc.getReadTensorboardTimeSeriesDataMethod)
== null) {
TensorboardServiceGrpc.getReadTensorboardTimeSeriesDataMethod =
getReadTensorboardTimeSeriesDataMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ReadTensorboardTimeSeriesData"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"ReadTensorboardTimeSeriesData"))
.build();
}
}
}
return getReadTensorboardTimeSeriesDataMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse>
getReadTensorboardBlobDataMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardBlobData",
requestType = com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest.class,
responseType = com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.SERVER_STREAMING)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse>
getReadTensorboardBlobDataMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse>
getReadTensorboardBlobDataMethod;
if ((getReadTensorboardBlobDataMethod = TensorboardServiceGrpc.getReadTensorboardBlobDataMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getReadTensorboardBlobDataMethod =
TensorboardServiceGrpc.getReadTensorboardBlobDataMethod)
== null) {
TensorboardServiceGrpc.getReadTensorboardBlobDataMethod =
getReadTensorboardBlobDataMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.SERVER_STREAMING)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ReadTensorboardBlobData"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("ReadTensorboardBlobData"))
.build();
}
}
}
return getReadTensorboardBlobDataMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>
getWriteTensorboardExperimentDataMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "WriteTensorboardExperimentData",
requestType = com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest.class,
responseType = com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>
getWriteTensorboardExperimentDataMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>
getWriteTensorboardExperimentDataMethod;
if ((getWriteTensorboardExperimentDataMethod =
TensorboardServiceGrpc.getWriteTensorboardExperimentDataMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getWriteTensorboardExperimentDataMethod =
TensorboardServiceGrpc.getWriteTensorboardExperimentDataMethod)
== null) {
TensorboardServiceGrpc.getWriteTensorboardExperimentDataMethod =
getWriteTensorboardExperimentDataMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "WriteTensorboardExperimentData"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"WriteTensorboardExperimentData"))
.build();
}
}
}
return getWriteTensorboardExperimentDataMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>
getWriteTensorboardRunDataMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "WriteTensorboardRunData",
requestType = com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest.class,
responseType = com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>
getWriteTensorboardRunDataMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>
getWriteTensorboardRunDataMethod;
if ((getWriteTensorboardRunDataMethod = TensorboardServiceGrpc.getWriteTensorboardRunDataMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getWriteTensorboardRunDataMethod =
TensorboardServiceGrpc.getWriteTensorboardRunDataMethod)
== null) {
TensorboardServiceGrpc.getWriteTensorboardRunDataMethod =
getWriteTensorboardRunDataMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "WriteTensorboardRunData"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier("WriteTensorboardRunData"))
.build();
}
}
}
return getWriteTensorboardRunDataMethod;
}
private static volatile io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>
getExportTensorboardTimeSeriesDataMethod;
@io.grpc.stub.annotations.RpcMethod(
fullMethodName = SERVICE_NAME + '/' + "ExportTensorboardTimeSeriesData",
requestType = com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest.class,
responseType = com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse.class,
methodType = io.grpc.MethodDescriptor.MethodType.UNARY)
public static io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>
getExportTensorboardTimeSeriesDataMethod() {
io.grpc.MethodDescriptor<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>
getExportTensorboardTimeSeriesDataMethod;
if ((getExportTensorboardTimeSeriesDataMethod =
TensorboardServiceGrpc.getExportTensorboardTimeSeriesDataMethod)
== null) {
synchronized (TensorboardServiceGrpc.class) {
if ((getExportTensorboardTimeSeriesDataMethod =
TensorboardServiceGrpc.getExportTensorboardTimeSeriesDataMethod)
== null) {
TensorboardServiceGrpc.getExportTensorboardTimeSeriesDataMethod =
getExportTensorboardTimeSeriesDataMethod =
io.grpc.MethodDescriptor
.
newBuilder()
.setType(io.grpc.MethodDescriptor.MethodType.UNARY)
.setFullMethodName(
generateFullMethodName(SERVICE_NAME, "ExportTensorboardTimeSeriesData"))
.setSampledToLocalTracing(true)
.setRequestMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest
.getDefaultInstance()))
.setResponseMarshaller(
io.grpc.protobuf.ProtoUtils.marshaller(
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse
.getDefaultInstance()))
.setSchemaDescriptor(
new TensorboardServiceMethodDescriptorSupplier(
"ExportTensorboardTimeSeriesData"))
.build();
}
}
}
return getExportTensorboardTimeSeriesDataMethod;
}
/** Creates a new async stub that supports all call types for the service */
public static TensorboardServiceStub newStub(io.grpc.Channel channel) {
io.grpc.stub.AbstractStub.StubFactory factory =
new io.grpc.stub.AbstractStub.StubFactory() {
@java.lang.Override
public TensorboardServiceStub newStub(
io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
return new TensorboardServiceStub(channel, callOptions);
}
};
return TensorboardServiceStub.newStub(factory, channel);
}
/**
* Creates a new blocking-style stub that supports unary and streaming output calls on the service
*/
public static TensorboardServiceBlockingStub newBlockingStub(io.grpc.Channel channel) {
io.grpc.stub.AbstractStub.StubFactory factory =
new io.grpc.stub.AbstractStub.StubFactory() {
@java.lang.Override
public TensorboardServiceBlockingStub newStub(
io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
return new TensorboardServiceBlockingStub(channel, callOptions);
}
};
return TensorboardServiceBlockingStub.newStub(factory, channel);
}
/** Creates a new ListenableFuture-style stub that supports unary calls on the service */
public static TensorboardServiceFutureStub newFutureStub(io.grpc.Channel channel) {
io.grpc.stub.AbstractStub.StubFactory factory =
new io.grpc.stub.AbstractStub.StubFactory() {
@java.lang.Override
public TensorboardServiceFutureStub newStub(
io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
return new TensorboardServiceFutureStub(channel, callOptions);
}
};
return TensorboardServiceFutureStub.newStub(factory, channel);
}
/**
*
*
*
* TensorboardService
*
*/
public interface AsyncService {
/**
*
*
*
* Creates a Tensorboard.
*
*/
default void createTensorboard(
com.google.cloud.aiplatform.v1.CreateTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getCreateTensorboardMethod(), responseObserver);
}
/**
*
*
*
* Gets a Tensorboard.
*
*/
default void getTensorboard(
com.google.cloud.aiplatform.v1.GetTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getGetTensorboardMethod(), responseObserver);
}
/**
*
*
*
* Updates a Tensorboard.
*
*/
default void updateTensorboard(
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getUpdateTensorboardMethod(), responseObserver);
}
/**
*
*
*
* Lists Tensorboards in a Location.
*
*/
default void listTensorboards(
com.google.cloud.aiplatform.v1.ListTensorboardsRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getListTensorboardsMethod(), responseObserver);
}
/**
*
*
*
* Deletes a Tensorboard.
*
*/
default void deleteTensorboard(
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getDeleteTensorboardMethod(), responseObserver);
}
/**
*
*
*
* Returns a list of monthly active users for a given TensorBoard instance.
*
*/
default void readTensorboardUsage(
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getReadTensorboardUsageMethod(), responseObserver);
}
/**
*
*
*
* Returns the storage size for a given TensorBoard instance.
*
*/
default void readTensorboardSize(
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getReadTensorboardSizeMethod(), responseObserver);
}
/**
*
*
*
* Creates a TensorboardExperiment.
*
*/
default void createTensorboardExperiment(
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getCreateTensorboardExperimentMethod(), responseObserver);
}
/**
*
*
*
* Gets a TensorboardExperiment.
*
*/
default void getTensorboardExperiment(
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getGetTensorboardExperimentMethod(), responseObserver);
}
/**
*
*
*
* Updates a TensorboardExperiment.
*
*/
default void updateTensorboardExperiment(
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getUpdateTensorboardExperimentMethod(), responseObserver);
}
/**
*
*
*
* Lists TensorboardExperiments in a Location.
*
*/
default void listTensorboardExperiments(
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getListTensorboardExperimentsMethod(), responseObserver);
}
/**
*
*
*
* Deletes a TensorboardExperiment.
*
*/
default void deleteTensorboardExperiment(
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getDeleteTensorboardExperimentMethod(), responseObserver);
}
/**
*
*
*
* Creates a TensorboardRun.
*
*/
default void createTensorboardRun(
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getCreateTensorboardRunMethod(), responseObserver);
}
/**
*
*
*
* Batch create TensorboardRuns.
*
*/
default void batchCreateTensorboardRuns(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getBatchCreateTensorboardRunsMethod(), responseObserver);
}
/**
*
*
*
* Gets a TensorboardRun.
*
*/
default void getTensorboardRun(
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getGetTensorboardRunMethod(), responseObserver);
}
/**
*
*
*
* Updates a TensorboardRun.
*
*/
default void updateTensorboardRun(
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getUpdateTensorboardRunMethod(), responseObserver);
}
/**
*
*
*
* Lists TensorboardRuns in a Location.
*
*/
default void listTensorboardRuns(
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getListTensorboardRunsMethod(), responseObserver);
}
/**
*
*
*
* Deletes a TensorboardRun.
*
*/
default void deleteTensorboardRun(
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getDeleteTensorboardRunMethod(), responseObserver);
}
/**
*
*
*
* Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
*
*/
default void batchCreateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getBatchCreateTensorboardTimeSeriesMethod(), responseObserver);
}
/**
*
*
*
* Creates a TensorboardTimeSeries.
*
*/
default void createTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getCreateTensorboardTimeSeriesMethod(), responseObserver);
}
/**
*
*
*
* Gets a TensorboardTimeSeries.
*
*/
default void getTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getGetTensorboardTimeSeriesMethod(), responseObserver);
}
/**
*
*
*
* Updates a TensorboardTimeSeries.
*
*/
default void updateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getUpdateTensorboardTimeSeriesMethod(), responseObserver);
}
/**
*
*
*
* Lists TensorboardTimeSeries in a Location.
*
*/
default void listTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getListTensorboardTimeSeriesMethod(), responseObserver);
}
/**
*
*
*
* Deletes a TensorboardTimeSeries.
*
*/
default void deleteTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getDeleteTensorboardTimeSeriesMethod(), responseObserver);
}
/**
*
*
*
* Reads multiple TensorboardTimeSeries' data. The data point number limit is
* 1000 for scalars, 100 for tensors and blob references. If the number of
* data points stored is less than the limit, all data is returned.
* Otherwise, the number limit of data points is randomly selected from
* this time series and returned.
*
*/
default void batchReadTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getBatchReadTensorboardTimeSeriesDataMethod(), responseObserver);
}
/**
*
*
*
* Reads a TensorboardTimeSeries' data. By default, if the number of data
* points stored is less than 1000, all data is returned. Otherwise, 1000
* data points is randomly selected from this time series and returned.
* This value can be changed by changing max_data_points, which can't be
* greater than 10k.
*
*/
default void readTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getReadTensorboardTimeSeriesDataMethod(), responseObserver);
}
/**
*
*
*
* Gets bytes of TensorboardBlobs.
* This is to allow reading blob data stored in consumer project's Cloud
* Storage bucket without users having to obtain Cloud Storage access
* permission.
*
*/
default void readTensorboardBlobData(
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getReadTensorboardBlobDataMethod(), responseObserver);
}
/**
*
*
*
* Write time series data points of multiple TensorboardTimeSeries in multiple
* TensorboardRun's. If any data fail to be ingested, an error is returned.
*
*/
default void writeTensorboardExperimentData(
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getWriteTensorboardExperimentDataMethod(), responseObserver);
}
/**
*
*
*
* Write time series data points into multiple TensorboardTimeSeries under
* a TensorboardRun. If any data fail to be ingested, an error is returned.
*
*/
default void writeTensorboardRunData(
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getWriteTensorboardRunDataMethod(), responseObserver);
}
/**
*
*
*
* Exports a TensorboardTimeSeries' data. Data is returned in paginated
* responses.
*
*/
default void exportTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>
responseObserver) {
io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall(
getExportTensorboardTimeSeriesDataMethod(), responseObserver);
}
}
/**
* Base class for the server implementation of the service TensorboardService.
*
*
* TensorboardService
*
*/
public abstract static class TensorboardServiceImplBase
implements io.grpc.BindableService, AsyncService {
@java.lang.Override
public final io.grpc.ServerServiceDefinition bindService() {
return TensorboardServiceGrpc.bindService(this);
}
}
/**
* A stub to allow clients to do asynchronous rpc calls to service TensorboardService.
*
*
* TensorboardService
*
*/
public static final class TensorboardServiceStub
extends io.grpc.stub.AbstractAsyncStub {
private TensorboardServiceStub(io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
super(channel, callOptions);
}
@java.lang.Override
protected TensorboardServiceStub build(
io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
return new TensorboardServiceStub(channel, callOptions);
}
/**
*
*
*
* Creates a Tensorboard.
*
*/
public void createTensorboard(
com.google.cloud.aiplatform.v1.CreateTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getCreateTensorboardMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Gets a Tensorboard.
*
*/
public void getTensorboard(
com.google.cloud.aiplatform.v1.GetTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getGetTensorboardMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Updates a Tensorboard.
*
*/
public void updateTensorboard(
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getUpdateTensorboardMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Lists Tensorboards in a Location.
*
*/
public void listTensorboards(
com.google.cloud.aiplatform.v1.ListTensorboardsRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getListTensorboardsMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Deletes a Tensorboard.
*
*/
public void deleteTensorboard(
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getDeleteTensorboardMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Returns a list of monthly active users for a given TensorBoard instance.
*
*/
public void readTensorboardUsage(
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getReadTensorboardUsageMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Returns the storage size for a given TensorBoard instance.
*
*/
public void readTensorboardSize(
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getReadTensorboardSizeMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Creates a TensorboardExperiment.
*
*/
public void createTensorboardExperiment(
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getCreateTensorboardExperimentMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Gets a TensorboardExperiment.
*
*/
public void getTensorboardExperiment(
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getGetTensorboardExperimentMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Updates a TensorboardExperiment.
*
*/
public void updateTensorboardExperiment(
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getUpdateTensorboardExperimentMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Lists TensorboardExperiments in a Location.
*
*/
public void listTensorboardExperiments(
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getListTensorboardExperimentsMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Deletes a TensorboardExperiment.
*
*/
public void deleteTensorboardExperiment(
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getDeleteTensorboardExperimentMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Creates a TensorboardRun.
*
*/
public void createTensorboardRun(
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getCreateTensorboardRunMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Batch create TensorboardRuns.
*
*/
public void batchCreateTensorboardRuns(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getBatchCreateTensorboardRunsMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Gets a TensorboardRun.
*
*/
public void getTensorboardRun(
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getGetTensorboardRunMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Updates a TensorboardRun.
*
*/
public void updateTensorboardRun(
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getUpdateTensorboardRunMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Lists TensorboardRuns in a Location.
*
*/
public void listTensorboardRuns(
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getListTensorboardRunsMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Deletes a TensorboardRun.
*
*/
public void deleteTensorboardRun(
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getDeleteTensorboardRunMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
*
*/
public void batchCreateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getBatchCreateTensorboardTimeSeriesMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Creates a TensorboardTimeSeries.
*
*/
public void createTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getCreateTensorboardTimeSeriesMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Gets a TensorboardTimeSeries.
*
*/
public void getTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getGetTensorboardTimeSeriesMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Updates a TensorboardTimeSeries.
*
*/
public void updateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getUpdateTensorboardTimeSeriesMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Lists TensorboardTimeSeries in a Location.
*
*/
public void listTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getListTensorboardTimeSeriesMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Deletes a TensorboardTimeSeries.
*
*/
public void deleteTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request,
io.grpc.stub.StreamObserver responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getDeleteTensorboardTimeSeriesMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Reads multiple TensorboardTimeSeries' data. The data point number limit is
* 1000 for scalars, 100 for tensors and blob references. If the number of
* data points stored is less than the limit, all data is returned.
* Otherwise, the number limit of data points is randomly selected from
* this time series and returned.
*
*/
public void batchReadTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getBatchReadTensorboardTimeSeriesDataMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Reads a TensorboardTimeSeries' data. By default, if the number of data
* points stored is less than 1000, all data is returned. Otherwise, 1000
* data points is randomly selected from this time series and returned.
* This value can be changed by changing max_data_points, which can't be
* greater than 10k.
*
*/
public void readTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getReadTensorboardTimeSeriesDataMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Gets bytes of TensorboardBlobs.
* This is to allow reading blob data stored in consumer project's Cloud
* Storage bucket without users having to obtain Cloud Storage access
* permission.
*
*/
public void readTensorboardBlobData(
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncServerStreamingCall(
getChannel().newCall(getReadTensorboardBlobDataMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Write time series data points of multiple TensorboardTimeSeries in multiple
* TensorboardRun's. If any data fail to be ingested, an error is returned.
*
*/
public void writeTensorboardExperimentData(
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getWriteTensorboardExperimentDataMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Write time series data points into multiple TensorboardTimeSeries under
* a TensorboardRun. If any data fail to be ingested, an error is returned.
*
*/
public void writeTensorboardRunData(
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request,
io.grpc.stub.StreamObserver
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getWriteTensorboardRunDataMethod(), getCallOptions()),
request,
responseObserver);
}
/**
*
*
*
* Exports a TensorboardTimeSeries' data. Data is returned in paginated
* responses.
*
*/
public void exportTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request,
io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>
responseObserver) {
io.grpc.stub.ClientCalls.asyncUnaryCall(
getChannel().newCall(getExportTensorboardTimeSeriesDataMethod(), getCallOptions()),
request,
responseObserver);
}
}
/**
* A stub to allow clients to do synchronous rpc calls to service TensorboardService.
*
*
* TensorboardService
*
*/
public static final class TensorboardServiceBlockingStub
extends io.grpc.stub.AbstractBlockingStub {
private TensorboardServiceBlockingStub(
io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
super(channel, callOptions);
}
@java.lang.Override
protected TensorboardServiceBlockingStub build(
io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
return new TensorboardServiceBlockingStub(channel, callOptions);
}
/**
*
*
*
* Creates a Tensorboard.
*
*/
public com.google.longrunning.Operation createTensorboard(
com.google.cloud.aiplatform.v1.CreateTensorboardRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getCreateTensorboardMethod(), getCallOptions(), request);
}
/**
*
*
*
* Gets a Tensorboard.
*
*/
public com.google.cloud.aiplatform.v1.Tensorboard getTensorboard(
com.google.cloud.aiplatform.v1.GetTensorboardRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getGetTensorboardMethod(), getCallOptions(), request);
}
/**
*
*
*
* Updates a Tensorboard.
*
*/
public com.google.longrunning.Operation updateTensorboard(
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getUpdateTensorboardMethod(), getCallOptions(), request);
}
/**
*
*
*
* Lists Tensorboards in a Location.
*
*/
public com.google.cloud.aiplatform.v1.ListTensorboardsResponse listTensorboards(
com.google.cloud.aiplatform.v1.ListTensorboardsRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getListTensorboardsMethod(), getCallOptions(), request);
}
/**
*
*
*
* Deletes a Tensorboard.
*
*/
public com.google.longrunning.Operation deleteTensorboard(
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getDeleteTensorboardMethod(), getCallOptions(), request);
}
/**
*
*
*
* Returns a list of monthly active users for a given TensorBoard instance.
*
*/
public com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse readTensorboardUsage(
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getReadTensorboardUsageMethod(), getCallOptions(), request);
}
/**
*
*
*
* Returns the storage size for a given TensorBoard instance.
*
*/
public com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse readTensorboardSize(
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getReadTensorboardSizeMethod(), getCallOptions(), request);
}
/**
*
*
*
* Creates a TensorboardExperiment.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardExperiment createTensorboardExperiment(
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getCreateTensorboardExperimentMethod(), getCallOptions(), request);
}
/**
*
*
*
* Gets a TensorboardExperiment.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardExperiment getTensorboardExperiment(
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getGetTensorboardExperimentMethod(), getCallOptions(), request);
}
/**
*
*
*
* Updates a TensorboardExperiment.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardExperiment updateTensorboardExperiment(
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getUpdateTensorboardExperimentMethod(), getCallOptions(), request);
}
/**
*
*
*
* Lists TensorboardExperiments in a Location.
*
*/
public com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse
listTensorboardExperiments(
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getListTensorboardExperimentsMethod(), getCallOptions(), request);
}
/**
*
*
*
* Deletes a TensorboardExperiment.
*
*/
public com.google.longrunning.Operation deleteTensorboardExperiment(
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getDeleteTensorboardExperimentMethod(), getCallOptions(), request);
}
/**
*
*
*
* Creates a TensorboardRun.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardRun createTensorboardRun(
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getCreateTensorboardRunMethod(), getCallOptions(), request);
}
/**
*
*
*
* Batch create TensorboardRuns.
*
*/
public com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse
batchCreateTensorboardRuns(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getBatchCreateTensorboardRunsMethod(), getCallOptions(), request);
}
/**
*
*
*
* Gets a TensorboardRun.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardRun getTensorboardRun(
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getGetTensorboardRunMethod(), getCallOptions(), request);
}
/**
*
*
*
* Updates a TensorboardRun.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardRun updateTensorboardRun(
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getUpdateTensorboardRunMethod(), getCallOptions(), request);
}
/**
*
*
*
* Lists TensorboardRuns in a Location.
*
*/
public com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse listTensorboardRuns(
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getListTensorboardRunsMethod(), getCallOptions(), request);
}
/**
*
*
*
* Deletes a TensorboardRun.
*
*/
public com.google.longrunning.Operation deleteTensorboardRun(
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getDeleteTensorboardRunMethod(), getCallOptions(), request);
}
/**
*
*
*
* Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
*
*/
public com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse
batchCreateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getBatchCreateTensorboardTimeSeriesMethod(), getCallOptions(), request);
}
/**
*
*
*
* Creates a TensorboardTimeSeries.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardTimeSeries createTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getCreateTensorboardTimeSeriesMethod(), getCallOptions(), request);
}
/**
*
*
*
* Gets a TensorboardTimeSeries.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardTimeSeries getTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getGetTensorboardTimeSeriesMethod(), getCallOptions(), request);
}
/**
*
*
*
* Updates a TensorboardTimeSeries.
*
*/
public com.google.cloud.aiplatform.v1.TensorboardTimeSeries updateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getUpdateTensorboardTimeSeriesMethod(), getCallOptions(), request);
}
/**
*
*
*
* Lists TensorboardTimeSeries in a Location.
*
*/
public com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse
listTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getListTensorboardTimeSeriesMethod(), getCallOptions(), request);
}
/**
*
*
*
* Deletes a TensorboardTimeSeries.
*
*/
public com.google.longrunning.Operation deleteTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getDeleteTensorboardTimeSeriesMethod(), getCallOptions(), request);
}
/**
*
*
*
* Reads multiple TensorboardTimeSeries' data. The data point number limit is
* 1000 for scalars, 100 for tensors and blob references. If the number of
* data points stored is less than the limit, all data is returned.
* Otherwise, the number limit of data points is randomly selected from
* this time series and returned.
*
*/
public com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse
batchReadTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getBatchReadTensorboardTimeSeriesDataMethod(), getCallOptions(), request);
}
/**
*
*
*
* Reads a TensorboardTimeSeries' data. By default, if the number of data
* points stored is less than 1000, all data is returned. Otherwise, 1000
* data points is randomly selected from this time series and returned.
* This value can be changed by changing max_data_points, which can't be
* greater than 10k.
*
*/
public com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse
readTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getReadTensorboardTimeSeriesDataMethod(), getCallOptions(), request);
}
/**
*
*
*
* Gets bytes of TensorboardBlobs.
* This is to allow reading blob data stored in consumer project's Cloud
* Storage bucket without users having to obtain Cloud Storage access
* permission.
*
*/
public java.util.Iterator
readTensorboardBlobData(
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest request) {
return io.grpc.stub.ClientCalls.blockingServerStreamingCall(
getChannel(), getReadTensorboardBlobDataMethod(), getCallOptions(), request);
}
/**
*
*
*
* Write time series data points of multiple TensorboardTimeSeries in multiple
* TensorboardRun's. If any data fail to be ingested, an error is returned.
*
*/
public com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse
writeTensorboardExperimentData(
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getWriteTensorboardExperimentDataMethod(), getCallOptions(), request);
}
/**
*
*
*
* Write time series data points into multiple TensorboardTimeSeries under
* a TensorboardRun. If any data fail to be ingested, an error is returned.
*
*/
public com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse writeTensorboardRunData(
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getWriteTensorboardRunDataMethod(), getCallOptions(), request);
}
/**
*
*
*
* Exports a TensorboardTimeSeries' data. Data is returned in paginated
* responses.
*
*/
public com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse
exportTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request) {
return io.grpc.stub.ClientCalls.blockingUnaryCall(
getChannel(), getExportTensorboardTimeSeriesDataMethod(), getCallOptions(), request);
}
}
/**
* A stub to allow clients to do ListenableFuture-style rpc calls to service TensorboardService.
*
*
* TensorboardService
*
*/
public static final class TensorboardServiceFutureStub
extends io.grpc.stub.AbstractFutureStub {
private TensorboardServiceFutureStub(io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
super(channel, callOptions);
}
@java.lang.Override
protected TensorboardServiceFutureStub build(
io.grpc.Channel channel, io.grpc.CallOptions callOptions) {
return new TensorboardServiceFutureStub(channel, callOptions);
}
/**
*
*
*
* Creates a Tensorboard.
*
*/
public com.google.common.util.concurrent.ListenableFuture
createTensorboard(com.google.cloud.aiplatform.v1.CreateTensorboardRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getCreateTensorboardMethod(), getCallOptions()), request);
}
/**
*
*
*
* Gets a Tensorboard.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.Tensorboard>
getTensorboard(com.google.cloud.aiplatform.v1.GetTensorboardRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getGetTensorboardMethod(), getCallOptions()), request);
}
/**
*
*
*
* Updates a Tensorboard.
*
*/
public com.google.common.util.concurrent.ListenableFuture
updateTensorboard(com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getUpdateTensorboardMethod(), getCallOptions()), request);
}
/**
*
*
*
* Lists Tensorboards in a Location.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ListTensorboardsResponse>
listTensorboards(com.google.cloud.aiplatform.v1.ListTensorboardsRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getListTensorboardsMethod(), getCallOptions()), request);
}
/**
*
*
*
* Deletes a Tensorboard.
*
*/
public com.google.common.util.concurrent.ListenableFuture
deleteTensorboard(com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getDeleteTensorboardMethod(), getCallOptions()), request);
}
/**
*
*
*
* Returns a list of monthly active users for a given TensorBoard instance.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>
readTensorboardUsage(com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getReadTensorboardUsageMethod(), getCallOptions()), request);
}
/**
*
*
*
* Returns the storage size for a given TensorBoard instance.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>
readTensorboardSize(com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getReadTensorboardSizeMethod(), getCallOptions()), request);
}
/**
*
*
*
* Creates a TensorboardExperiment.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardExperiment>
createTensorboardExperiment(
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getCreateTensorboardExperimentMethod(), getCallOptions()), request);
}
/**
*
*
*
* Gets a TensorboardExperiment.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardExperiment>
getTensorboardExperiment(
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getGetTensorboardExperimentMethod(), getCallOptions()), request);
}
/**
*
*
*
* Updates a TensorboardExperiment.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardExperiment>
updateTensorboardExperiment(
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getUpdateTensorboardExperimentMethod(), getCallOptions()), request);
}
/**
*
*
*
* Lists TensorboardExperiments in a Location.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>
listTensorboardExperiments(
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getListTensorboardExperimentsMethod(), getCallOptions()), request);
}
/**
*
*
*
* Deletes a TensorboardExperiment.
*
*/
public com.google.common.util.concurrent.ListenableFuture
deleteTensorboardExperiment(
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getDeleteTensorboardExperimentMethod(), getCallOptions()), request);
}
/**
*
*
*
* Creates a TensorboardRun.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardRun>
createTensorboardRun(com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getCreateTensorboardRunMethod(), getCallOptions()), request);
}
/**
*
*
*
* Batch create TensorboardRuns.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>
batchCreateTensorboardRuns(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getBatchCreateTensorboardRunsMethod(), getCallOptions()), request);
}
/**
*
*
*
* Gets a TensorboardRun.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardRun>
getTensorboardRun(com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getGetTensorboardRunMethod(), getCallOptions()), request);
}
/**
*
*
*
* Updates a TensorboardRun.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardRun>
updateTensorboardRun(com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getUpdateTensorboardRunMethod(), getCallOptions()), request);
}
/**
*
*
*
* Lists TensorboardRuns in a Location.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>
listTensorboardRuns(com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getListTensorboardRunsMethod(), getCallOptions()), request);
}
/**
*
*
*
* Deletes a TensorboardRun.
*
*/
public com.google.common.util.concurrent.ListenableFuture
deleteTensorboardRun(com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getDeleteTensorboardRunMethod(), getCallOptions()), request);
}
/**
*
*
*
* Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>
batchCreateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getBatchCreateTensorboardTimeSeriesMethod(), getCallOptions()),
request);
}
/**
*
*
*
* Creates a TensorboardTimeSeries.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
createTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getCreateTensorboardTimeSeriesMethod(), getCallOptions()), request);
}
/**
*
*
*
* Gets a TensorboardTimeSeries.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
getTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getGetTensorboardTimeSeriesMethod(), getCallOptions()), request);
}
/**
*
*
*
* Updates a TensorboardTimeSeries.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>
updateTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getUpdateTensorboardTimeSeriesMethod(), getCallOptions()), request);
}
/**
*
*
*
* Lists TensorboardTimeSeries in a Location.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>
listTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getListTensorboardTimeSeriesMethod(), getCallOptions()), request);
}
/**
*
*
*
* Deletes a TensorboardTimeSeries.
*
*/
public com.google.common.util.concurrent.ListenableFuture
deleteTensorboardTimeSeries(
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getDeleteTensorboardTimeSeriesMethod(), getCallOptions()), request);
}
/**
*
*
*
* Reads multiple TensorboardTimeSeries' data. The data point number limit is
* 1000 for scalars, 100 for tensors and blob references. If the number of
* data points stored is less than the limit, all data is returned.
* Otherwise, the number limit of data points is randomly selected from
* this time series and returned.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>
batchReadTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getBatchReadTensorboardTimeSeriesDataMethod(), getCallOptions()),
request);
}
/**
*
*
*
* Reads a TensorboardTimeSeries' data. By default, if the number of data
* points stored is less than 1000, all data is returned. Otherwise, 1000
* data points is randomly selected from this time series and returned.
* This value can be changed by changing max_data_points, which can't be
* greater than 10k.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>
readTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getReadTensorboardTimeSeriesDataMethod(), getCallOptions()),
request);
}
/**
*
*
*
* Write time series data points of multiple TensorboardTimeSeries in multiple
* TensorboardRun's. If any data fail to be ingested, an error is returned.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>
writeTensorboardExperimentData(
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getWriteTensorboardExperimentDataMethod(), getCallOptions()),
request);
}
/**
*
*
*
* Write time series data points into multiple TensorboardTimeSeries under
* a TensorboardRun. If any data fail to be ingested, an error is returned.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>
writeTensorboardRunData(
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getWriteTensorboardRunDataMethod(), getCallOptions()), request);
}
/**
*
*
*
* Exports a TensorboardTimeSeries' data. Data is returned in paginated
* responses.
*
*/
public com.google.common.util.concurrent.ListenableFuture<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>
exportTensorboardTimeSeriesData(
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request) {
return io.grpc.stub.ClientCalls.futureUnaryCall(
getChannel().newCall(getExportTensorboardTimeSeriesDataMethod(), getCallOptions()),
request);
}
}
private static final int METHODID_CREATE_TENSORBOARD = 0;
private static final int METHODID_GET_TENSORBOARD = 1;
private static final int METHODID_UPDATE_TENSORBOARD = 2;
private static final int METHODID_LIST_TENSORBOARDS = 3;
private static final int METHODID_DELETE_TENSORBOARD = 4;
private static final int METHODID_READ_TENSORBOARD_USAGE = 5;
private static final int METHODID_READ_TENSORBOARD_SIZE = 6;
private static final int METHODID_CREATE_TENSORBOARD_EXPERIMENT = 7;
private static final int METHODID_GET_TENSORBOARD_EXPERIMENT = 8;
private static final int METHODID_UPDATE_TENSORBOARD_EXPERIMENT = 9;
private static final int METHODID_LIST_TENSORBOARD_EXPERIMENTS = 10;
private static final int METHODID_DELETE_TENSORBOARD_EXPERIMENT = 11;
private static final int METHODID_CREATE_TENSORBOARD_RUN = 12;
private static final int METHODID_BATCH_CREATE_TENSORBOARD_RUNS = 13;
private static final int METHODID_GET_TENSORBOARD_RUN = 14;
private static final int METHODID_UPDATE_TENSORBOARD_RUN = 15;
private static final int METHODID_LIST_TENSORBOARD_RUNS = 16;
private static final int METHODID_DELETE_TENSORBOARD_RUN = 17;
private static final int METHODID_BATCH_CREATE_TENSORBOARD_TIME_SERIES = 18;
private static final int METHODID_CREATE_TENSORBOARD_TIME_SERIES = 19;
private static final int METHODID_GET_TENSORBOARD_TIME_SERIES = 20;
private static final int METHODID_UPDATE_TENSORBOARD_TIME_SERIES = 21;
private static final int METHODID_LIST_TENSORBOARD_TIME_SERIES = 22;
private static final int METHODID_DELETE_TENSORBOARD_TIME_SERIES = 23;
private static final int METHODID_BATCH_READ_TENSORBOARD_TIME_SERIES_DATA = 24;
private static final int METHODID_READ_TENSORBOARD_TIME_SERIES_DATA = 25;
private static final int METHODID_READ_TENSORBOARD_BLOB_DATA = 26;
private static final int METHODID_WRITE_TENSORBOARD_EXPERIMENT_DATA = 27;
private static final int METHODID_WRITE_TENSORBOARD_RUN_DATA = 28;
private static final int METHODID_EXPORT_TENSORBOARD_TIME_SERIES_DATA = 29;
private static final class MethodHandlers
implements io.grpc.stub.ServerCalls.UnaryMethod,
io.grpc.stub.ServerCalls.ServerStreamingMethod,
io.grpc.stub.ServerCalls.ClientStreamingMethod,
io.grpc.stub.ServerCalls.BidiStreamingMethod {
private final AsyncService serviceImpl;
private final int methodId;
MethodHandlers(AsyncService serviceImpl, int methodId) {
this.serviceImpl = serviceImpl;
this.methodId = methodId;
}
@java.lang.Override
@java.lang.SuppressWarnings("unchecked")
public void invoke(Req request, io.grpc.stub.StreamObserver responseObserver) {
switch (methodId) {
case METHODID_CREATE_TENSORBOARD:
serviceImpl.createTensorboard(
(com.google.cloud.aiplatform.v1.CreateTensorboardRequest) request,
(io.grpc.stub.StreamObserver) responseObserver);
break;
case METHODID_GET_TENSORBOARD:
serviceImpl.getTensorboard(
(com.google.cloud.aiplatform.v1.GetTensorboardRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_UPDATE_TENSORBOARD:
serviceImpl.updateTensorboard(
(com.google.cloud.aiplatform.v1.UpdateTensorboardRequest) request,
(io.grpc.stub.StreamObserver) responseObserver);
break;
case METHODID_LIST_TENSORBOARDS:
serviceImpl.listTensorboards(
(com.google.cloud.aiplatform.v1.ListTensorboardsRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_DELETE_TENSORBOARD:
serviceImpl.deleteTensorboard(
(com.google.cloud.aiplatform.v1.DeleteTensorboardRequest) request,
(io.grpc.stub.StreamObserver) responseObserver);
break;
case METHODID_READ_TENSORBOARD_USAGE:
serviceImpl.readTensorboardUsage(
(com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>)
responseObserver);
break;
case METHODID_READ_TENSORBOARD_SIZE:
serviceImpl.readTensorboardSize(
(com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>)
responseObserver);
break;
case METHODID_CREATE_TENSORBOARD_EXPERIMENT:
serviceImpl.createTensorboardExperiment(
(com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_GET_TENSORBOARD_EXPERIMENT:
serviceImpl.getTensorboardExperiment(
(com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_UPDATE_TENSORBOARD_EXPERIMENT:
serviceImpl.updateTensorboardExperiment(
(com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_LIST_TENSORBOARD_EXPERIMENTS:
serviceImpl.listTensorboardExperiments(
(com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>)
responseObserver);
break;
case METHODID_DELETE_TENSORBOARD_EXPERIMENT:
serviceImpl.deleteTensorboardExperiment(
(com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest) request,
(io.grpc.stub.StreamObserver) responseObserver);
break;
case METHODID_CREATE_TENSORBOARD_RUN:
serviceImpl.createTensorboardRun(
(com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_BATCH_CREATE_TENSORBOARD_RUNS:
serviceImpl.batchCreateTensorboardRuns(
(com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>)
responseObserver);
break;
case METHODID_GET_TENSORBOARD_RUN:
serviceImpl.getTensorboardRun(
(com.google.cloud.aiplatform.v1.GetTensorboardRunRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_UPDATE_TENSORBOARD_RUN:
serviceImpl.updateTensorboardRun(
(com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_LIST_TENSORBOARD_RUNS:
serviceImpl.listTensorboardRuns(
(com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>)
responseObserver);
break;
case METHODID_DELETE_TENSORBOARD_RUN:
serviceImpl.deleteTensorboardRun(
(com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest) request,
(io.grpc.stub.StreamObserver) responseObserver);
break;
case METHODID_BATCH_CREATE_TENSORBOARD_TIME_SERIES:
serviceImpl.batchCreateTensorboardTimeSeries(
(com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>)
responseObserver);
break;
case METHODID_CREATE_TENSORBOARD_TIME_SERIES:
serviceImpl.createTensorboardTimeSeries(
(com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_GET_TENSORBOARD_TIME_SERIES:
serviceImpl.getTensorboardTimeSeries(
(com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_UPDATE_TENSORBOARD_TIME_SERIES:
serviceImpl.updateTensorboardTimeSeries(
(com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest) request,
(io.grpc.stub.StreamObserver)
responseObserver);
break;
case METHODID_LIST_TENSORBOARD_TIME_SERIES:
serviceImpl.listTensorboardTimeSeries(
(com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>)
responseObserver);
break;
case METHODID_DELETE_TENSORBOARD_TIME_SERIES:
serviceImpl.deleteTensorboardTimeSeries(
(com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest) request,
(io.grpc.stub.StreamObserver) responseObserver);
break;
case METHODID_BATCH_READ_TENSORBOARD_TIME_SERIES_DATA:
serviceImpl.batchReadTensorboardTimeSeriesData(
(com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>)
responseObserver);
break;
case METHODID_READ_TENSORBOARD_TIME_SERIES_DATA:
serviceImpl.readTensorboardTimeSeriesData(
(com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>)
responseObserver);
break;
case METHODID_READ_TENSORBOARD_BLOB_DATA:
serviceImpl.readTensorboardBlobData(
(com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse>)
responseObserver);
break;
case METHODID_WRITE_TENSORBOARD_EXPERIMENT_DATA:
serviceImpl.writeTensorboardExperimentData(
(com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>)
responseObserver);
break;
case METHODID_WRITE_TENSORBOARD_RUN_DATA:
serviceImpl.writeTensorboardRunData(
(com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>)
responseObserver);
break;
case METHODID_EXPORT_TENSORBOARD_TIME_SERIES_DATA:
serviceImpl.exportTensorboardTimeSeriesData(
(com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest) request,
(io.grpc.stub.StreamObserver<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>)
responseObserver);
break;
default:
throw new AssertionError();
}
}
@java.lang.Override
@java.lang.SuppressWarnings("unchecked")
public io.grpc.stub.StreamObserver invoke(
io.grpc.stub.StreamObserver responseObserver) {
switch (methodId) {
default:
throw new AssertionError();
}
}
}
public static final io.grpc.ServerServiceDefinition bindService(AsyncService service) {
return io.grpc.ServerServiceDefinition.builder(getServiceDescriptor())
.addMethod(
getCreateTensorboardMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.CreateTensorboardRequest,
com.google.longrunning.Operation>(service, METHODID_CREATE_TENSORBOARD)))
.addMethod(
getGetTensorboardMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.GetTensorboardRequest,
com.google.cloud.aiplatform.v1.Tensorboard>(service, METHODID_GET_TENSORBOARD)))
.addMethod(
getUpdateTensorboardMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.UpdateTensorboardRequest,
com.google.longrunning.Operation>(service, METHODID_UPDATE_TENSORBOARD)))
.addMethod(
getListTensorboardsMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ListTensorboardsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardsResponse>(
service, METHODID_LIST_TENSORBOARDS)))
.addMethod(
getDeleteTensorboardMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.DeleteTensorboardRequest,
com.google.longrunning.Operation>(service, METHODID_DELETE_TENSORBOARD)))
.addMethod(
getReadTensorboardUsageMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>(
service, METHODID_READ_TENSORBOARD_USAGE)))
.addMethod(
getReadTensorboardSizeMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>(
service, METHODID_READ_TENSORBOARD_SIZE)))
.addMethod(
getCreateTensorboardExperimentMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>(
service, METHODID_CREATE_TENSORBOARD_EXPERIMENT)))
.addMethod(
getGetTensorboardExperimentMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>(
service, METHODID_GET_TENSORBOARD_EXPERIMENT)))
.addMethod(
getUpdateTensorboardExperimentMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest,
com.google.cloud.aiplatform.v1.TensorboardExperiment>(
service, METHODID_UPDATE_TENSORBOARD_EXPERIMENT)))
.addMethod(
getListTensorboardExperimentsMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>(
service, METHODID_LIST_TENSORBOARD_EXPERIMENTS)))
.addMethod(
getDeleteTensorboardExperimentMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest,
com.google.longrunning.Operation>(
service, METHODID_DELETE_TENSORBOARD_EXPERIMENT)))
.addMethod(
getCreateTensorboardRunMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>(
service, METHODID_CREATE_TENSORBOARD_RUN)))
.addMethod(
getBatchCreateTensorboardRunsMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>(
service, METHODID_BATCH_CREATE_TENSORBOARD_RUNS)))
.addMethod(
getGetTensorboardRunMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.GetTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>(
service, METHODID_GET_TENSORBOARD_RUN)))
.addMethod(
getUpdateTensorboardRunMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest,
com.google.cloud.aiplatform.v1.TensorboardRun>(
service, METHODID_UPDATE_TENSORBOARD_RUN)))
.addMethod(
getListTensorboardRunsMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest,
com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>(
service, METHODID_LIST_TENSORBOARD_RUNS)))
.addMethod(
getDeleteTensorboardRunMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest,
com.google.longrunning.Operation>(service, METHODID_DELETE_TENSORBOARD_RUN)))
.addMethod(
getBatchCreateTensorboardTimeSeriesMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>(
service, METHODID_BATCH_CREATE_TENSORBOARD_TIME_SERIES)))
.addMethod(
getCreateTensorboardTimeSeriesMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>(
service, METHODID_CREATE_TENSORBOARD_TIME_SERIES)))
.addMethod(
getGetTensorboardTimeSeriesMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>(
service, METHODID_GET_TENSORBOARD_TIME_SERIES)))
.addMethod(
getUpdateTensorboardTimeSeriesMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.TensorboardTimeSeries>(
service, METHODID_UPDATE_TENSORBOARD_TIME_SERIES)))
.addMethod(
getListTensorboardTimeSeriesMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest,
com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>(
service, METHODID_LIST_TENSORBOARD_TIME_SERIES)))
.addMethod(
getDeleteTensorboardTimeSeriesMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest,
com.google.longrunning.Operation>(
service, METHODID_DELETE_TENSORBOARD_TIME_SERIES)))
.addMethod(
getBatchReadTensorboardTimeSeriesDataMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>(
service, METHODID_BATCH_READ_TENSORBOARD_TIME_SERIES_DATA)))
.addMethod(
getReadTensorboardTimeSeriesDataMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>(
service, METHODID_READ_TENSORBOARD_TIME_SERIES_DATA)))
.addMethod(
getReadTensorboardBlobDataMethod(),
io.grpc.stub.ServerCalls.asyncServerStreamingCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest,
com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse>(
service, METHODID_READ_TENSORBOARD_BLOB_DATA)))
.addMethod(
getWriteTensorboardExperimentDataMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>(
service, METHODID_WRITE_TENSORBOARD_EXPERIMENT_DATA)))
.addMethod(
getWriteTensorboardRunDataMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest,
com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>(
service, METHODID_WRITE_TENSORBOARD_RUN_DATA)))
.addMethod(
getExportTensorboardTimeSeriesDataMethod(),
io.grpc.stub.ServerCalls.asyncUnaryCall(
new MethodHandlers<
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest,
com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>(
service, METHODID_EXPORT_TENSORBOARD_TIME_SERIES_DATA)))
.build();
}
private abstract static class TensorboardServiceBaseDescriptorSupplier
implements io.grpc.protobuf.ProtoFileDescriptorSupplier,
io.grpc.protobuf.ProtoServiceDescriptorSupplier {
TensorboardServiceBaseDescriptorSupplier() {}
@java.lang.Override
public com.google.protobuf.Descriptors.FileDescriptor getFileDescriptor() {
return com.google.cloud.aiplatform.v1.TensorboardServiceProto.getDescriptor();
}
@java.lang.Override
public com.google.protobuf.Descriptors.ServiceDescriptor getServiceDescriptor() {
return getFileDescriptor().findServiceByName("TensorboardService");
}
}
private static final class TensorboardServiceFileDescriptorSupplier
extends TensorboardServiceBaseDescriptorSupplier {
TensorboardServiceFileDescriptorSupplier() {}
}
private static final class TensorboardServiceMethodDescriptorSupplier
extends TensorboardServiceBaseDescriptorSupplier
implements io.grpc.protobuf.ProtoMethodDescriptorSupplier {
private final java.lang.String methodName;
TensorboardServiceMethodDescriptorSupplier(java.lang.String methodName) {
this.methodName = methodName;
}
@java.lang.Override
public com.google.protobuf.Descriptors.MethodDescriptor getMethodDescriptor() {
return getServiceDescriptor().findMethodByName(methodName);
}
}
private static volatile io.grpc.ServiceDescriptor serviceDescriptor;
public static io.grpc.ServiceDescriptor getServiceDescriptor() {
io.grpc.ServiceDescriptor result = serviceDescriptor;
if (result == null) {
synchronized (TensorboardServiceGrpc.class) {
result = serviceDescriptor;
if (result == null) {
serviceDescriptor =
result =
io.grpc.ServiceDescriptor.newBuilder(SERVICE_NAME)
.setSchemaDescriptor(new TensorboardServiceFileDescriptorSupplier())
.addMethod(getCreateTensorboardMethod())
.addMethod(getGetTensorboardMethod())
.addMethod(getUpdateTensorboardMethod())
.addMethod(getListTensorboardsMethod())
.addMethod(getDeleteTensorboardMethod())
.addMethod(getReadTensorboardUsageMethod())
.addMethod(getReadTensorboardSizeMethod())
.addMethod(getCreateTensorboardExperimentMethod())
.addMethod(getGetTensorboardExperimentMethod())
.addMethod(getUpdateTensorboardExperimentMethod())
.addMethod(getListTensorboardExperimentsMethod())
.addMethod(getDeleteTensorboardExperimentMethod())
.addMethod(getCreateTensorboardRunMethod())
.addMethod(getBatchCreateTensorboardRunsMethod())
.addMethod(getGetTensorboardRunMethod())
.addMethod(getUpdateTensorboardRunMethod())
.addMethod(getListTensorboardRunsMethod())
.addMethod(getDeleteTensorboardRunMethod())
.addMethod(getBatchCreateTensorboardTimeSeriesMethod())
.addMethod(getCreateTensorboardTimeSeriesMethod())
.addMethod(getGetTensorboardTimeSeriesMethod())
.addMethod(getUpdateTensorboardTimeSeriesMethod())
.addMethod(getListTensorboardTimeSeriesMethod())
.addMethod(getDeleteTensorboardTimeSeriesMethod())
.addMethod(getBatchReadTensorboardTimeSeriesDataMethod())
.addMethod(getReadTensorboardTimeSeriesDataMethod())
.addMethod(getReadTensorboardBlobDataMethod())
.addMethod(getWriteTensorboardExperimentDataMethod())
.addMethod(getWriteTensorboardRunDataMethod())
.addMethod(getExportTensorboardTimeSeriesDataMethod())
.build();
}
}
}
return result;
}
}